Earth-prints repository, logo   DSpace

About DSpace Software
|earth-prints home page | roma library | bologna library | catania library | milano library | napoli library | palermo library
Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/4376

Authors: Scheibner, B.*
Heumann, A.*
Wörner, G.*
Civetta, L.*
Title: Crustal residence times of explosive phonolite magmas: U–Th ages of magmatic Ca-Garnets of Mt. Somma-Vesuvius (Italy)
Title of journal: Earth and Planetary Science Letters
Series/Report no.: 3-4/276 (2008)
Publisher: Elsevier
Issue Date: 2008
DOI: 10.1016/j.epsl.2008.09.028
Keywords: Uranium
Thorium
U–Th isotopes
Somma-Vesuvius
Abstract: Assessing the residence times of phonolite magmas in the shallow crust contributes to the understanding of explosive volcanic systems. Estimations of that by dating the residence time of a mineral in a melt was difficult in the past, because e.g. of the lack of evidence for the co-genetic character of the crystals dated. Here we present an estimate for the residence time of a phonolite magma feeding the Pomici di Mercato Plinian eruption (8890±90 cal years BP) of Mt. Somma-Vesuvius (Southern Italy), employing U–Th disequilibrium dating of unzoned Ca-rich phenocrystic magmatic garnets. Based on combined textural, geochemical, and Sr- O isotope evidence, these garnets can be identified as co-genetic with their host phonolites. Furthermore, experimental and petrological data suggest that Ca-garnets can be a liquidus phase in highly differentiated phonolite magmas of Mercato. A whole-rock–glass–garnet U–Th isochron gives a crystallisation age for the Ca-rich garnets of 14,400±1100 a (2σ). This implies a Ca-garnet residence time of 5510±1100 years (2σ) in the Mercato phonolite melt prior to eruption and provides one of the first robust estimates of how long explosive phonolite magma has resided in the shallow crust before eruption. Calculations of magma cooling rates and settling velocities of the Ca-garnets confirm that garnet-bearing phonolite can remain liquid and the garnets remain suspended in a magma chamber for as long as 5510 years before the time of eruption. Processes which may have disturbed the U–Th isotope systematic of the samples, such as assimilation, recharge or surface alteration can be ruled out.
Appears in Collections:04.08.99. General or miscellaneous
Papers Published / Papers in press

Files in This Item:

File SizeFormatVisibility
SchHeu-08.pdf612.42 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Share this record
Del.icio.us

Citeulike

Connotea

Facebook

Stumble it!

reddit


 

Valid XHTML 1.0! ICT Support, development & maintenance are provided by CINECA. Powered on DSpace Software. CINECA