Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/4339
DC FieldValueLanguage
dc.contributor.authorallAmoruso, A.; Dipartimento di Fisica, Università di Salerno, Italyen
dc.contributor.authorallCrescentini, L.; Dipartimento di Fisica, Università di Salerno, Italyen
dc.contributor.authorallBerrino, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.date.accessioned2008-11-26T14:34:43Zen
dc.date.available2008-11-26T14:34:43Zen
dc.date.issued2008en
dc.identifier.urihttp://hdl.handle.net/2122/4339en
dc.description.abstractA very large uplift (about 1.8 m) occurred in the period 1982–1984 at Campi Flegrei caldera, Italy, without culminating in an eruption. A still-standing controversy accompanies the interpretation of deformation and gravity changes recorded during the unrest, which were interpreted to result from the sub-surface magmatic reservoir by some authors and from the hydrothermal system or hybrid sources by others. Here for the first time we take into account crustal layering while inverting leveling, EDM, and gravity data using uniformlypressurized sources, namely small vertical spheroids and finite horizontal penny-shaped sources. The weight of EDM data in the misfit function is chosen from a trade-off curve in order to balance the compromise between fitting the leveling and the EDM data well. Models using a homogeneous medium cannot give a good simultaneous fit to leveling and EDM deformation data of the 1982–1984 unrest, whereas incorporating a layered structure (determined from seismically derived estimates of the P wave speed for the crust, and not adjusted to improve the fit in any of the inversions) allows a significantly better fit. Also, layering affects the sub-surface mass redistribution effects on gravity changes, and we show that the retrieved intrusion density is in full agreement with densities for highly evolved magmas expected at the Campi Flegrei caldera for depths of 3 to 4 km, ruling out hydrothermal fluids as the primary cause of the 1982–1984 unrest. The source of the 1982–1984 CF unrest was probably a shallow (about 3-km deep) penny-shaped magma intrusion fed by a deeper magma chamber; source overpressure was few MPa.en
dc.language.isoEnglishen
dc.publisher.nameElsevier.en
dc.relation.ispartofEarth and Planetary Science Lettersen
dc.relation.ispartofseries1-2/272(2008)en
dc.subjectvolcanic hazarden
dc.subjectcaldera unresten
dc.subjectgravityen
dc.subjectdeformationen
dc.titleSimultaneous inversion of deformation and gravity changes in a horizontally layered half-space: Evidences for magma intrusion during the 1982–1984 unrest at Campi Flegrei caldera (Italy)en
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber181-188en
dc.subject.INGV04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformationsen
dc.subject.INGV04. Solid Earth::04.03. Geodesy::04.03.05. Gravity variationsen
dc.subject.INGV04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoringen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoringen
dc.identifier.doi10.1016/j.epsl.2008.04.040en
dc.relation.referencesAGIP, 1987. Modello geotermico del sistema flegreo (Sintesi). Technical Report, SERGMESG, San Donato, Italy. Amoruso, A., Crescentini, L., 2007. Inversion of leveling data: how important is error treatment? Geophys. J. Int. 171, 1352–1362. doi:10.1111/j.1365-246X.2007.03585.x. Amoruso, A., Crescentini, L., Scarpa, R., 2002. Source parameters of the 1908 Messina Straits, Italy, earthquake from geodetic and seismic data. J. Geophys. Res. 107. doi:10.1029/2001JB000434. Amoruso, A., Crescentini, L., Fidani, C., 2004. Effects of crustal layering on source parameter inversion from coseismic geodetic data. Geophys. J. Int. 159, 353–364. doi:10.1111/j.1365-246X.2004.02389. Amoruso, A., Crescentini, L., Scarpa, R., 2005. Faulting geometry for the complex 1980 Campania–Lucania earthquake from levelling data. Geophys. J. Int. 162, 156–168. doi:10.1111/j.1365-246X.2005.02652.x. Amoruso, A., Crescentini, L., Linde, A.T., Sacks, I.S., Scarpa, R., Romano, P., 2007. A horizontal crack in a layered structure satisfies deformation for the 2004–2006 uplift of Campi Flegrei. Geophys. Res. Lett. 34, L22313. doi:10.1029/2007GL031644. Barberi, F., Hill, D.P., Innocenti, F., Luongo, G., Treuil, M. (Eds.), 1984. The 1982–1984 Bradyseismic crisis at Phlegrean Fields (Italy). Bull. Volcanol., vol. 47, pp. 173–411. Battaglia, M., Segall, P., 2004. The interpretation of gravity changes and crustal deformation in active volcanic areas. Pure Appl. Geophys. 161, 1453–1467. Battaglia, M., Troise, C., Obrizzo, F., Pingue, F., De Natale, G., 2006. Evidence for fluid migration as the source of deformation at Campi Flegrei caldera (Italy). Geophys. Res. Lett. 33, L01307. doi:10.1029/2005GL024904. Berrino, G., 1994. Gravity changes induced by height–mass variations at the Campi Flegrei caldera. J. Volcanol. Geotherm. Res. 61, 293–309. Crescentini, L., Amoruso, A., 2007. Effects of crustal layering on the inversion of deformation and gravity data in volcanic areas: an application to the Campi Flegrei caldera, Italy. Geophys. Res. Lett. 34, L09303. doi:10.1029/2007GL029919. Davis, P.M., 1986. Surface deformation due to inflation of an arbitrarily oriented triaxial ellipsoidal cavity in an elastic half-space, with reference to Kilauea Volcano, Hawaii. J. Geophys. Res. 91, 7429–7438. De Natale, G., Troise, C., Pingue, F., Mastrolorenzo, G., Pappalardo, L., Boschi, E., 2006. The Campi Flegrei caldera: unrest mechanisms and hazards. Troise, C., De Natale, G., Kilburn, C.R.J. (Eds.), Mechanisms of Activity and Unrest at Large Calderas. Geol. Soc. London Spec. Publ., vol. 269, pp. 25–45. Dvorak, J., Berrino, G., 1991. Recent ground movement and seismic activity in Campi Flegrei, southern Italy, episodic growth of a resurgent dome. J. Geophys. Res. 96, 2309–2323. Dvorak, J.J., Mastrolorenzo, G., 1991. The mechanisms of recent vertical crustal movements in Campi Flegrei Caldera, southern Italy. U.S. Geol. Surv. Spec. Pap. 263, 1–47. Fialko, Y., Kazhan, Y., Simons, M., 2001. Deformation due to a pressurized horizontal circular crack in an elastic half-space, with applications to volcano geodesy. Geophys. J. Int. 146, 181–190. Gottsmann, J., Berrino, G., Rymer, H., Williams-Jones, G., 2003. Hazard assessment during caldera unrest at the Campi Flegrei, Italy: a contribution from gravity–height gradients. Earth Planet. Sci. Lett. 211, 295–309. Gottsmann, J., Folch, A., Rymer, H., 2006a. Unrest at Campi Flegrei: a contribution to the magmatic versus hydrothermal debate from inverse and finite element modeling. J. Geophys. Res. 111, B07203. doi:10.1029/2005JB003745. Gottsmann, J., Rymer, H., Berrino, G., 2006b. Unrest at the Campi Flegrei caldera (Italy): a critical evaluation of source parameters from geodetic data inversion. J. Volcanol. Geotherm. Res. 150, 132–145. doi:10.1016/j.jvolgeores.2005.07.002. Ingber, L., 1993. Simulated annealing: practice versus theory. Math. Comput. Model. 18, 29–57. Judenherc, S., Zollo, A., 2004. The Bay of Naples (Southern Italy): constraints on the volcanic structures inferred from a dense seismic survey. J. Geophys. Res. 109, B10312. doi:10.1029/2003JB002876. Landau, L.D., Lifsits, E.M., 1975. The Classical Theory of Fields, first ed. Pergamon Press, New York. Ludwig,W.J., Nafe, J.E., Drake, C.L., 1970. Seismic refraction. Maxwell, A.E. (Ed.), The Sea, vol. 4. Wiley-Interscience, New York, pp. 53–84. Newhall, G., Dzurisin, D., 1988. Historical Unrest at Large Calderas of the World. U.S. Geological Survey, Reston, VA. 1108 pp. Sambridge, M., 1999a. Geophysical inversion with a neighbourhood algorithm — I. Searching a parameter space. Geophys. J. Int. 138, 479–494. Sambridge, M., 1999b. Geophysical inversion with a neighbourhood algorithm — II. Appraising the ensemble. Geophys. J. Int. 138, 727–746. Trasatti, E., Giunchi, C., Bonafede, M., 2003. Effects of topography and rheological layering on ground deformation in volcanic regions. J. Volcanol. Geotherm. Res. 122, 89–110. Trasatti, E., Giunchi, C., Bonafede, M., 2005. Structural and rheological constraints on source depth and overpressure estimates at the Campi Flegrei caldera, Italy. J. Volcanol. Geotherm. Res. 144, 105–118. Walsh, J., Rice, J., 1979. Local changes in gravity resulting from deformation. J. Geophys. Res. 84, 165–170. Wang, R., Lorenzo Martín, F., Roth, F., 2006. PSGRN/PSCMP — a new code for calculating co- and post-seismic deformation, geoid and gravity changes based on the viscoelastic-gravitational dislocation theory. Comput. Geosci. 32, 527–541. Williams, C.A., Wadge, G., 2000. An accurate and efficient method for including the effects of topography in three-dimensional elastic models of ground deformation with applications to radar interferometry. J. Geophys. Res. 105 (B4), 8103–8120.en
dc.description.obiettivoSpecifico2.6. TTC - Laboratorio di gravimetria, magnetismo ed elettromagnetismo in aree attiveen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorAmoruso, A.en
dc.contributor.authorCrescentini, L.en
dc.contributor.authorBerrino, G.en
dc.contributor.departmentDipartimento di Fisica, Università di Salerno, Italyen
dc.contributor.departmentDipartimento di Fisica, Università di Salerno, Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptUniversità degli Studi di Salerno-
crisitem.author.deptUniversità degli Studi di Salerno-
crisitem.author.orcid0000-0002-4703-2435-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
AmoCre-08.pdf1.1 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

49
checked on Feb 10, 2021

Page view(s) 50

203
checked on Apr 24, 2024

Download(s)

31
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric