Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/429
DC FieldValueLanguage
dc.contributor.authorallAcocella, V.; Universita Roma TRE, Dip. Scienze Geologicheen
dc.contributor.authorallFuniciello, R.; Universita Roma TRE, Dip. Scienze Geologicheen
dc.contributor.authorallMarotta, E.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallOrsi, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallDe Vita, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.date.accessioned2005-09-28T08:34:17Zen
dc.date.available2005-09-28T08:34:17Zen
dc.date.issued2004en
dc.identifier.urihttp://hdl.handle.net/2122/429en
dc.description.abstractThe structure and shape of collapses and resurgences is often controlled by pre-existing discontinuities, such as normal faults in rift zones. In order to study the role of extensional structures on collapse and resurgence, we used analogue models. Dry sand simulated the brittle crust; silicone, located at the base of the sand-pack, simulated magma. In the experiments, regional extension pre-dated collapse or resurgence, forming normal faults in a grabenlike structure; the graben was filled with additional sand, simulating post-rift deposits. A piston then moved the silicone downward or upward, inducing collapse or resurgence within the previously deformed sand. The collapses showed an ellipticity (length of minor axis/length of major axis) between 0.8 and 0.9, with the major axis parallel to the extension direction. The partial reactivation of the pre-existing normal faults was observed during the development of the caldera reverse faults, which, conversely to what was expected (from experiments without preexisting extension), became partly inward dipping. Resurgence showed an elongation of the uplifted part, with the main axis perpendicular to the extension direction. At depth, pre-existing normal faults were partly reactivated by the reverse faults formed during resurgence; these locally became outward dipping normal faults. A total reactivation of pre-existing faults was also observed during resurgence. The experiments suggest that the observed elongation of calderas and resurgences is the result of the reactivation of pre-existing structures during differential uplift. Such a reactivation is mainly related to the loss in the coefficient of friction of the sand. The results suggest that elliptic calderas and resurgences in nature may develop even from circular magma chambers.en
dc.format.extent487 bytesen
dc.format.extent1345163 bytesen
dc.format.mimetypetext/htmlen
dc.format.mimetypeapplication/pdfen
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofJournal of volcanology and geothermal researchen
dc.relation.ispartofseries129en
dc.subjectExtensional structuresen
dc.subjectCalderaen
dc.subjectResurgenceen
dc.subjectAnalogue modelsen
dc.subjectReactivationen
dc.titleThe role of extensional structures on experimental calderas and resurgenceen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber199-217en
dc.identifier.URLwww.elsevier.com/locate/jvolgeoresen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risken
dc.identifier.doi10.1016/S0377-0273(03)00240-3en
dc.relation.referencesAcocella, V., Funiciello, R., 1999. The interaction between regional and local tectonics during resurgent doming: The case of the island of Ischia, Italy. J. Volcanol. Geotherm. Res. 88, 109^123. Acocella, V., Cifelli, F., Funiciello, R., 2000. Analogue models of collapse calderas and resurgent domes. J. Volcanol. Geotherm. Res. 104, 81^96. Acocella, V., Cifelli, F., Funiciello, R., 2001a. The control of overburden thickness on resurgent domes: Insights from analogue models. J. Volcanol. Geotherm. Res. 111, 137^153. Acocella, V., Cifelli, F., Funiciello, R., 2001b. Formation and architecture of nested collapse calderas : Insights from analogue models. Terra Nova 13, 58^63. Acocella, V., Korme, T., Salvini, F.,Funiciello, R., 2002. The control of transverse tectonics on caldera development in the Ethiopian Rift. J. Volcanol. Geotherm. Res. 119, 189^203. Bailey, R.A., Dalrymple, G.B., Lanphere, M.A., 1976. Volcanism, structure, and geochronology of Long Valley Caldera, Mono County, California. J. Geophys. Res. 81, 725^744. Bosworth, W., Burke, K., Strecker, M., 2000. Magma chamber elongation as an indicator of intraplate stress ¢eld orientation: ‘Borehole breakout mechanism’ and examples from the Late Pleistocene to Recent Kenya Rift Valley. In: Jessel, M.W., Urai, J.L. (Eds.), Stress, Strain and tructure, A Volume in Honour of W.D. Means. J. Virtual Explor. 2. Civetta, L., Cornette, Y., Gillot, P.Y., Orsi, G., 1988. The eruptive history of Pantelleria (Sicily Channel) in the last 50 ka. Bull. Volcanol. 50, 47^57. De Chabalier, J.B., Avouac, J.P., 1994. Kinematics of the Asal Rift (Djibouti) determined from the deformation of Fieale Volcano. Science 265, 1677^1681. Donnadieu, F., Merle, O., 1998. Experiments on the indentation process during cryptodome intrusions: New insights into Mount St. Helens deformation. Geology 26, 79^82. Druitt, T.H., Sparks, R.S., 1984. On the formation of calderas during ignimbrite eruptions. Nature 310, 679^681. Faccenna, C., Nalpas, T., Brun, J.P., Davy, P., Bosi, V., 1995. The inffluence of pre-existing thrust faults on normal fault geometry in nature and in experiments. J. Struct. Geol. 17, 1139^1149. Goldstein, N.E., Stein, R.S., 1988. What’s new at Long Valley. J. Geophys. Res. 93, 13187^13190. Gudmundsson, A., 1988. Formation of collapse calderas. Geology 16, 808^810. Gudmundsson, A., 1998. Formation and development of normal-fault calderas and the initiation of large explosive eruptions. Bull. Volcanol. 60, 160^170. Gudmundsson, A., Marti, J., Turon, E., 1997. Stress fields generating ring faults in volcanoes. Geophys. Res. Lett. 24, 1559^1562. Gudmundsson, A., Backstrom, K., 1991. Structure and development of the Sveinagja graben, northeast Iceland. Tectonophysics 200, 111^125. Hailermariam, H., Mulugeta, G., 1998. Temperature-dependent rheology of bouncing putties used as rock analogs. Tectonophysics 294, 131^141. Henry, C.H., Price, J.G., 1984. Variations in caldera development in the tertiary volcanic field of Trans-Pecos Texas. J. Geophys. Res. 89, 8765^8786. Hubbert, M.K., 1937. Theory of scale models as applied to the study of geologic structures. Bull. Geol. Soc. Am. 48, 1459^1520. Kennedy, B., Stix, J., Lavallee, Y., Vallance, J., 1999. Controls on caldera structure and morphology: Results from experimental simulations. EOS Trans. Am. Geophys. Union 80, F1121. Komuro, H., 1987. Experiments on cauldron formation: A polygonal cauldron and ring fractures. J. Volcanol. Geotherm. Res. 31, 139^149. Krantz, R.W., 1991. Measurements of friction coefficients and cohesion for faulting and fault reactivation in laboratory models using sand and sand mixtures. In: Cobbold, P.R. (Ed.), Experimental and Numerical Modelling of Continental Deformation. Tectonophysics 188, pp. 203^207. Lindsay, J.M., de Silva, S., Trumbull, R., Emmermann, R., Wemmer, K., 2001. La Pacana caldera, N. Chile a re-evaluation of the stratigraphy and volcanology of one of the world’s largest resurgent calderas. J. Volcanol. Geotherm. Res. 106, 145^173. Lipman, P.W., 1984. The roots of ash flow calderas in Western North America: Windows into the tops of granitic batholiths. J. Geophys. Res. 89, 8801^8841. Lipman, P.W., 1997. Subsidence of ash-£ow calderas: Relation to caldera size and magma-chamber geometry. Bull. Volcanol. 59, 198^218. Marsh, B.D., 1984. On the mechanics of caldera resurgence. J. Geophys. Res. 89, 8245^8251. Marti, J., Ablay, G.J., Redshaw, L.T., Sparks, R.S.J., 1994. Experimental studies of collapse calderas. J. Geol. Soc. Lond. 151, 919^929. Merle, O., 1998. Internal strain within lava flows from analogue modelling. J. Volcanol. Geotherm. Res. 81, 189^206. Merle, O., Vendeville, B., 1995. Experimental modelling of thin-skinned shortening around magmatic intrusions. Bull. Volcanol. 57, 33^43. Newhall, C.G., Dzurisin, D., 1988. Historical Unrest at Large Calderas of the World. U.S. Geological Survey, 1109 pp. Nielson, D.L., Hulen, J.B., 1984. Internal geology and evolution of the Redondo Dome, Valles Caldera, New Mexico. J. Geophys. Res. 89, 9695^9711. Opheim, J.A., Gudmundsson, A., 1989. Formation and geometry of fractures and related volcanism of the Krafla fissure swarm, Northeast Iceland. Geol. Soc. Am. Bull. 101, 1608^1622. Orsi, G., De Vita, S., di Vito, M., 1996. The restless, resurgent Campi Flegrei nested caldera (Italy): Constrains on its evolution and configuration. J. Volcanol. Geotherm. Res. 74, 179^214. Orsi, G., Gallo, G., Zanchi, A., 1991. Simple-shearing block resurgence in caldera depressions. A model from Pantelleria and Ischia. J. Volcanol. Geotherm. Res. 47, 1^11. Ramberg, H., 1981. Gravity, Deformation and the Earth’s Crust, 2nd ed. Academic Press, London, 452 pp. Riller, U., Petrinovic, I., Ramelow, J., Strecker, M., Oncken, O., 2001. Late Cenozoic tectonism, collapse caldera and plateau formation in the central Andes. Earth Planet. Sci. Lett. 188, 299^311. Roche, O., Druitt, T.H., Merle, O., 2000. Experimental study of caldera formation. J. Geophys. Res. 105, 395^416. Scandone, R., 1990. Chaotic collapse of calderas. J. Volcanol. Geotherm. Res. 42, 285^302. Schellart, W.P., 2000. Shear test results for cohesion and friction coefficients for different granular materials: Scaling implications for their usage in analogue modelling. Tectonophysics 324, 1^16. Self, S., Goff, F., Gardner, J.N., Wright, J.V., Kite, W.M., 1986. Explosive rhyolitic volcanism in the Jemez Mountains: Vent locations, caldera development and relation to regional structure. J. Geophys. Res. 91, 1779^1798. Sibson, R.H., 1985. A note on fault reactivation. J. Struct. Geol. 7, 751^754. Smith, R.L., 1979. Ash-£ow magmatism. Geol. Soc. Am. Spec. Pap. 180, 5^27. Smith, R.L., Bailey, R.A., 1968. Resurgent cauldrons. Geol. Soc. Am. Mem. 116, 613^662. Talbot, C.J., 1999. Can field data constrain rock viscosities? J. Struct. Geol. 21, 949^957. Tibaldi, A., Vezzoli, L., 1998. The space problem of caldera resurgence: An example from Ischia Island, Italy. Geol. Rundsch. 87, 53^66. Tibaldi, A., Vezzoli, L., 2000. Late Quaternary monoclinal folding induced by caldera resurgence at Ischia, Italy. In: Cosgrove, J.W., Ameen, M.S. (Eds.), Forced Folds and Fractures. Geol. Soc. Lond. Spec. Publ. 169, pp. 103^113. Troll, V.R., Walter, T.R., Schmincke, H.U., 2002. Cyclic caldera collapse: Piston or piecemeal subsidence? Field and experimental evidence. Geology 30, 135^138. Walker, G.P.L., 1988. Three hawaiian calderas: An origin through loading by shallow intrusions? J. Geophys. Res. 93, 14773^14784. Walter, T.R., Troll, V.R., 2001. Formation of caldera periphery faults: An experimental study. Bull. Volcanol. 63, 191^203. Weijermars, R., Jackson, M.P.A., Vendeville, B., 1993. Rheological and tectonic modeling of salt provinces. Tectonophysics 217, 143^174. Williams, H., 1941. Calderas and their origin. Calif. Univ. Publ. Geol. Sci. Bull. 21, 239^346. Withjack, M.O., Scheiner, C., 1982. Fault patterns associated with domes - An experimental and analytical study. AAPG Bull. 66, 302^316.en
dc.description.fulltextpartially_openen
dc.contributor.authorAcocella, V.en
dc.contributor.authorFuniciello, R.en
dc.contributor.authorMarotta, E.en
dc.contributor.authorOrsi, G.en
dc.contributor.authorDe Vita, S.en
dc.contributor.departmentUniversita Roma TRE, Dip. Scienze Geologicheen
dc.contributor.departmentUniversita Roma TRE, Dip. Scienze Geologicheen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptUniversità Roma Tre, Dipartimento di Scienze Geologiche, Rome, Italy-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.orcid0000-0001-7211-2173-
crisitem.author.orcid0000-0002-5337-7560-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Acocella.pdf1.31 MBAdobe PDF
journal volcanology geothermal research.htmredirect - journal of volcanology and geothermal research487 BHTMLView/Open
Show simple item record

WEB OF SCIENCETM
Citations

81
checked on Feb 10, 2021

Page view(s) 50

195
checked on Apr 17, 2024

Download(s)

83
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric