Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/4269
DC FieldValueLanguage
dc.contributor.authorallConsole, R.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallMurru, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallCatalli, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallFalcone, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.date.accessioned2008-11-25T07:51:05Zen
dc.date.available2008-11-25T07:51:05Zen
dc.date.issued2007-01en
dc.identifier.urihttp://hdl.handle.net/2122/4269en
dc.description.abstractWe propose an earthquake clustering model based on the popular concept of epidemic models. In these models every earthquake can be regarded as both triggered by previous events and as a potential triggering event for subsequent earthquakes (Ogata 1988, 1998; Ogata and Zhuang 2006 and reference therein; Console and Murru 2001; Console et al. 2003; Console et al. 2006a, 2006b; Helmstetter and Sornette 2002a, 2002b, 2003 for reviews; and Vere-Jones 2006 for review on the use of stochastic models for earthquake occurrence). The occurrence- rate density at any time and geographical location is computed by the contribution of every previous event using a kernel function that takes into proper account: (a) the magnitude of the triggering earthquake, (b) the spatial distance from the triggering event, and (c) the time interval between the triggering event and the instant considered for the computation. The magnitude distribution adopted here is the Gutenberg-Richter law (Gutenberg and Richter 1944). The above-mentioned criteria are implemented through the introduction of the rate-and-state constitutive law in a previously existing epidemic algorithm. The validity of the model can be tested in an exercise of realtime forecast.en
dc.language.isoEnglishen
dc.publisher.nameSeismological society of Americaen
dc.relation.ispartofSeismological Research Lettersen
dc.relation.ispartofseries1/78 (2007)en
dc.subjectrate and stateen
dc.subjectETASen
dc.titleReal time forecasts through an earthquake clustering model constrained by the rate-and-state constitutive law compared with a purely stochastic ETAS modelen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber49-56en
dc.subject.INGV01. Atmosphere::01.02. Ionosphere::01.02.03. Forecastsen
dc.relation.referencesAkaike, H. (1977). On entropy maximization principle. In Applications of Statistics, ed. P. R. Krishnaiah, 27–41. Amsterdam and New York: North Holland Pub. Co. Console, R., and M. Murru (2001). A simple and testable model for earthquake clustering. Journal of Geophysical Research 106, 8,699–8,711. Console, R., M. Murru, and A. M. Lombardi (2003). Refining earthquake clustering models. Journal of Geophysical Research 108, 2,468, doi: 10.1029/2002JB002130. Console, R., M. Murru, and F. Catalli (2006a). Physical and stochastic models of earthquake clustering. Tectonophysics 417, 141–153. Console, R., D. A. Rhoades, M. Murru, F. F. Evison, E. E. Papadimitriou, and V. G. Karakostas (2006b). Comparative performance of timeinvariant, long-range and short-range forecasting models on the earthquake catalogue of Greece. Journal of Geophysical Research 111, B09304, doi:10.1029/2005JB004113. Console, R., and F. Catalli. A physical model for aftershocks triggered by dislocation on a rectangular fault. Annals of Geophysics, forthcoming. Dieterich, J. H. (1986). A model for the nucleation of earthquake slip. In Earthquake Source Mechanics, Geophysical Monograph, Maurice Ewing Series, American Geophysical Union, Washington D.C. 37, 36–49. Dieterich, J. H. (1992). Earthquake nucleation on faults with rate and state dependent strength. Tectonophysics 211, 115–134. Dieterich, J. H. (1994). A constitutive law for rate of earthquake production and its application to earthquake clustering. Journal of Geophysical Research 99, 2,601–2,618. Dieterich, J. H. (1995). Earthquake simulations with time-dependent nucleation and long-range interactions. Nonlinear Processes in Geophysics 2, 109–120. Gutenberg, B., and C. F. Richter (1944). Frequency of earthquakes in California. Bulletin of the Seismological Society of America 34, 185–188. Harris, R. A., and R. W. Simpson (1998). Suppression of large earthquakes by stress shadows: A comparison of Coulomb and rate-and-state failure. Journal of Geophysical Research 103, 24,439–24,451. Helmstetter, A., and D. Sornette (2002a). Sub-critical and super-critical regimes in epidemic models of earthquake aftershocks. Journal of Geophysical Research 107, 2237, 10.1029/2001JB001580. Helmstetter, A., and D. Sornette (2002b). Diffusion of epicenters of earthquake aftershocks, Omori’s law, and generalized continuoustime random walk models. Physical Review E 66, doi: 10.1103/ PhysRevE.66.061104. Helmstetter, A., and D. Sornette (2003). Importance of direct and indirect triggered seismicity in the ETAS model of seismicity. Geophysical Research Letters 30, 1,576, doi:10.1029/2003GL017670. Helmstetter, A., G. Ouillon, and D. Sornette (2003). Are aftershocks of large California earthquakes diffusing? Journal of Geophysical Research 108, 2483, doi:10.1029/2003JB002503. Helmstetter, A., Y. Y. Kagan, and D. D. Jackson (2006). Comparison of short-term and time-independent earthquake forecast models for Southern California. Bulletin of the Seismological Society of America 96, 90–106, doi: 10.1785/0120050067. Holliday, J.R., K. Z. Nanjo, K. F. Tiampo, J. B. Rundle, and D. L. Turcotte (2005). Earthquake forecasting and its verification. Nonlinear Processes in Geophysics, 12 965–977. Kagan, Y. Y. (2002). Aftershock zone scaling. Bulletin of the Seismological Society of America 92, 641–655, doi: 10.1785/0120010172. Ogata, Y. (1983). Estimation of the parameters in the modified Omori formula for aftershock frequencies by the maximum likelihood procedure. Journal of Physics of the Earth 31, 115–124. Ogata, Y., (1988). Statistical models for earthquake occurrence and residual analysis for point process. Journal of the American Statistical Association 83, 9–27. Ogata, Y. (1998). Space-time point-process models for earthquake occurrences. Annals of the Institute of Statistical Mathematics 50, 379– 402. Ogata, Y., and J. Zhuang (2006). Space-time ETAS models and an improved extension. Tectonophysics 413, 13–23. Ruina, A. (1983). Slip instability and state variable friction laws. Journal of Geophysical Research 88 (B12), 10,359–10,370. Shi, Y., and A. Bolt (1982). The standard error of the magnitude-frequency b value. Bulletin of the Seismological Society of America 72, 1,677–1,687. Schorlemmer, D., M. Gerstenberger, S. Wiemer, E. Field, L. Jones, and D. D. Jackson (2004). T-RELM Testing Center: Rigorous testing of probabilistic earthquake forecast models. Poster presented at the 2004 Seismological Society of America meeting, Lake Tahoe. http://www. earthquake.ethz.ch/docs/presentations/poster_schorlemmer2005.pdf Vere-Jones, D. (2006). The development of statistical seismology: A personal experience. Tectonophysics 413, 5–12. Toda, S., and R. S. Stein (2003). Toggling of seismicity by the 1997 Kagoshima earthquake couplet: A demonstration of time-dependent stress transfer. Journal of Geophysical Research 108, 2567, doi: 10.1029/2003JB002365.en
dc.description.obiettivoSpecifico3.1. Fisica dei terremotien
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorConsole, R.en
dc.contributor.authorMurru, M.en
dc.contributor.authorCatalli, F.en
dc.contributor.authorFalcone, G.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.orcid0000-0002-7385-394X-
crisitem.author.orcid0000-0002-2554-4421-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent01. Atmosphere-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
SSA07.pdfArticle1.23 MBAdobe PDF
Show simple item record

Page view(s) 50

158
checked on Mar 27, 2024

Download(s)

46
checked on Mar 27, 2024

Google ScholarTM

Check