Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/425
DC FieldValueLanguage
dc.contributor.authorallAiuppa, A.; Dipartimento CFTA, Universita` di Palermo, via Archirafi 36, 90123 Palermo, Italyen
dc.contributor.authorallFederico, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.authorallAllard, P.; Laboratoire Pierre Su¨e, CNRS-CEA, CE-Saclay, 91191 Gif/Yvette, Franceen
dc.contributor.authorallGurrieri, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.authorallValenza, M.; Dipartimento CFTA, Universita` di Palermo, via Archirafi 36, 90123 Palermo, Italyen
dc.date.accessioned2005-09-27T13:49:02Zen
dc.date.available2005-09-27T13:49:02Zen
dc.date.issued2005en
dc.identifier.urihttp://hdl.handle.net/2122/425en
dc.description.abstractWe report a detailed study of trace metals in groundwaters from the Somma-Vesuvius volcanic complex and present a model of the chemical processes that control the fate of these components during gas–water–rock interactions. Trace metal concentrations in Vesuvian groundwaters range from 0.01 to 0.1 Ag/l for ultra-trace elements (Sb, Cs, Co, Cd, and Pb) up to 0.1–10 mg/l for minor elements (Fe and Sr), leading to water–rock ratios from ~0.5 to 10 9 when normalized to trace element concentrations in the host rocks. Our results indicate non-isochemical dissolution of local volcanic rocks by groundwaters,during which mobile trace elements (As, Se, Mo, V, Li) are enriched and elements such as Al, Pb, Co, and Mn are depleted in the aqueous phase compared to the pristine composition of unleached rocks. Speciation computation and mineral–solution equilibria provide insights into the processes controlling the abundance and mobility of both major and trace elements in the fluids and allow quantitative modeling of gas–water–rock interactions. This latter was done using a forward reaction path model based on the principle of irreversible reactions involving minerals and aqueous solutions (Helgeson, H.C., 1968. Evaluation of irreversible reactions in geochemical processes involving minerals and aqueous solutions: I. Thermodynamic relations. Geochim. Cosmochim. Acta, 32, 853–877), and incorporating transition-state theory to account for rates of mineral dissolution reactions (Aagaard, P., Helgeson, H.C., 1982. Thermodynamic and kinetic constraints on reaction rates among minerals and aqueous solutions, 1. Theoretical considerations. Amer. J. Sci., 282, 237–285). The EQ3NR/6 software package (Wolery, T.J.,1994. EQ3NR, Letter report: EQ3/6 version 8.0. Differences from version 7. UCRL_ID_129749, Lawrence Livermore National Laboratory, Livermore, California) was used to simulate the reaction paths and the aqueous concentrations of trace elements with increasing extent of rock weathering. Fairly good matching between the modeled and analytical groundwater compositions supports the validity of our approach and provides reliable information on the main sources and sinks of trace metals during gas–water–rock interactions in the volcanic aquifer of Vesuvius.en
dc.format.extent539 bytesen
dc.format.extent1127445 bytesen
dc.format.mimetypetext/htmlen
dc.format.mimetypeapplication/pdfen
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofChemical geologyen
dc.relation.ispartofseries216(2005)en
dc.subjecttrace elementsen
dc.subjectVesuviusen
dc.subjectEQ3/6en
dc.subjectkineticsen
dc.subjectweatheringen
dc.titleTrace metal modeling of groundwater–gas–rock interactions in a volcanic aquifer: Mount Vesuvius, Southern Italyen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber289– 311en
dc.identifier.URLhttp://www.sciencedirect.com/en
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamicsen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoringen
dc.subject.INGV05. General::05.02. Data dissemination::05.02.01. Geochemical dataen
dc.identifier.doi10.1016/j.chemgeo.2004.11.017en
dc.relation.referencesAagaard, P., Helgeson, H.C., 1982. Thermodynamic and kinetic constraints on reaction rates among minerals and aqueous solutions: 1. Theoretical considerations. Am. J. Sci. 282, 237–285. Acker, J.G., Bricker, O.P., 1992. The influence of pH on biotite dissolution and alteration kinetics at low temperature. Geochim. Cosmochim. Acta 56, 3073–3092. Aiuppa, A., Allard, P., D’Alessandro, W., Michel, A., Parello, F., Treuil, M., et al., 2000a. Mobility and fluxes of major, minor and trace metals during basalt weathering at Mt. Etna volcano (Sicily). Geochim. Cosmochim. Acta 64, 1827–1841. Aiuppa, A., Dongarrà, G., Capasso, G., Allard, P., 2000b. Trace metals in the thermal waters of Vulcano Island. J. Volcanol. Geotherm. Res. 98, 189–207. Andronico, D., Calderoni, G., Cioni, R., Sbrana, A., Sulpizio, R.,Santacroce, R., 1995. Geological map of Somma–Vesuvius volcano. Period. Mineral. 64, 77–78. Appelo, C.A.J., Postma, D., 1993. Geochemistry, groundwater and pollution. Balkema, Rotterdam. Aprile, F., Ortolani, F., 1979. Sulla struttura profonda della Piana Campana. Boll. Soc. Nat. Napoli 88, 243–261. Arno` , V., Principe, C., Rosi, M., Santacroce, R., Sbrana, A.,Sheridan, L.F., 1987. Somma–Vesuvius eruptive history. In: Santacroce, R. (Ed.), Somma vesuvius, CNR Quad. Ric. Sci., vol. 114, 8, pp. 53–103. Ayuso, R.A., De Vivo, B., Rolandi, G., Seal II, R.R., Paone, A.,1998. Geochemical and isotopic (Nd–Pb–Sr–O) variations bearing on the genesis of volcanic rocks from Vesuvius, Italy. J. Volcanol. Geotherm. Res. 82, 53–78. Baes, C.F., Mesmer, R.E., 1976. The hydrolysis of cations. Wiley-Interscience, New York. Barnes, H.L. (Ed.), 1997. Geochemistry of hydrothermal ore deposits, 3rd edition. Wiley and Sons, New York. Bernasconi, A., Bruni, P., Gorla, L., Principe, C., Sbrana, A., 1981. Risultati preliminari dell’esplorazione geotermica profonda nell’area vulcanica del Somma-Vesuvio. Rend. Soc. Geol. Ital. 4, 237–240. Bianco, F., Castellano, M., Milano, G., Ventura, G., Vilardo, G., 1998. The Somma–Vesuvius stress field induced by regional tectonics: evidences from seismological and mesostructural data. J. Volcanol. Geotherm. Res. 82, 199–218. Bruno, J., 1990. The influence of dissolved carbon dioxide on trace metal speciation in seawater. Mar. Chem. 30, 231–240. Caliro, S., Panichi, C., Stanzione, D., 1998. Baseline study of the isotopic and chemical composition of waters associated with the Somma–Vesuvius volcanic system. Acta Vulcanol. 10, 19–25. Celico, P., 1978. Schema idrogeologico dell’Appennino carbonatico centro-meridionale. Mem. Note Ist. Geol. Appl. 14 (Cap. I),1–97. Napoli. Celico, P., 1983. Idrogeologia dei massicci carbonatici, delle piane quaternarie e delle aree vulcaniche dell’Italia centromeridionale (Marche e Lazio meridionali Abruzzo, Molise e Campania). Quad. Cassa Mezzog. 4 (2), 190–194. Celico, P., Stanzione, D., Esposito, L., Ghiara, M.R., Piscopo, V., Caliro, S., et al., 1998. Caratterizzazione idrogeologica e idrogeochimica dell’area Vesuviana. Boll. Soc. Geol. Ital. CXVII, 3–20. Chen, Y., Brantley, S.L., 1998. Diopside and anthophyllite dissolution at 25 8C and 90 8C and acid pH. Chem. Geol. 147, 233–248. Civetta, L., Santacroce, R., 1992. Steady-state magma supply in the last 3400 years of Vesuvian activity. Acta Vulcanol. 2,147–159. Corniello, A., De Riso, R., Ducci, D., 1990. Idrogeologia e idrogeochimica della Piana Campana. Mem. Soc. Geol. Ital. 45, 351–360. Delibrias, G., Di Paola, G.M., Rosi, M., Santacroce, R., 1979. La storia eruttiva del complesso vulcanico Somma–Vesuvio ricostruita dalle successioni piroclastiche del Monte Somma. Rend. Soc. Ital. Mineral. Petrol. 35, 411–438. Dirkse, T.P., 1986. Copper, silver, gold and zinc, cadmium, mercury oxides and hydroxides. In: Kertes, A.S. (Ed.), IUPAC Solubility Data Series vol. 23. Pergamon Press, Oxford. Douglas, G.R., 1987. Manganese-rich rock coatings from Iceland. Earth Surf. Landf. 12, 301–310. Drever, J.I., 1997. The Geochemistry of Natural Waters: Surface and Groundwater Environments. Prentice-Hall, New Jersey, ISBN: 0-13-272790-0. Eyring, H., 1935. The activate complex in chemical reactions. J. Chem. Phys. 3, 107–115. Federico, C., 1999. Interaction between magmatic gases and the hydrological system at Vesuvius (southern Italy) during current dormancy: evidence from water and gas geochemistry. PhD Thesis, Università di Palermo, Italy. Federico, C., Aiuppa, A., Allard, P., Bellomo, S., Jean-Baptiste, P., Michel, A., et al., 2002. Magma-derived gas influx and water–rock interactions in the volcanic aquifer of Mt. Vesuvius, Italy. Geochim. Cosmochim. Acta 66, 963–981. Gislason, S.R., Arnorsson, S., 1993. Dissolution of primary minerals in natural waters: saturation state and kinetics. Chem. Geol. 105, 117–135. Gislason, S.R., Eugster, H.P., 1987. Meteoric water–basalt interactions: II. A field study in NE Iceland. Geochim. Cosmochim. Acta 51, 2841– 2855. Gislason, S.R., Arnorsson, S., Armannsson, H., 1996. Chemical weathering of basalt in southwest Iceland: effects of runoff, age of rocks and vegetative/glacial cover. Am. J. Sci. 296,837–907. Goguel, R.L., 1983. The rare alkalies in hydrothermal alteration at Wairakei and Broadlands geothermal fields. N.Z. Geochim. Cosmochim. Acta 47, 429–437. Helgeson, H.C., 1968. Evaluation of irreversible reactions in geochemical processes involving minerals and aqueous solutions: I. Thermodynamic relations. Geochim. Cosmochim. Acta 32, 853–877. Helgeson, H.C., 1979. Mass transfer among minerals and hydrothermal solutions. In: Barnes, H.L. (Ed.), Geochemistry of Hydrothermal Ore Deposits. Wiley, New York, pp. 568–610. Helgeson, H.C., Garrels, R.M., Mackenzie, F.T., 1969. Evaluation of irreversible reactions in geochemical processes involving minerals aqueous solutions: II. Applications. Geochim. Cosmochim. Acta 33, 455–481. Helgeson, H.C., Murphy, W.M., Aagaard, P., 1984. Thermodynamic and kinetic constraints on reaction rates among minerals and aqueous solutions. Geochim. Cosmochim. Acta 48, 2405–2432. Ippolito, F., Ortolani, F., Russo, M., 1973. Struttura marginale tirrenica dell’Appennino Campano: reinterpretazione dei dati di antiche ricerche di idrocarburi. Mem. Soc. Geol. Ital. 12, 27–250. Joron, J.L., Métrich, N., Rosi, M., Santacroce, R., Sbrana, A., 1987. Chemistry and petrography. In: Santacroce, R. (Ed.), Somma–Vesuvius, Quaderni de "La Ricerca Scientifica" CNR, vol. 114,8, pp. 105–171. Kalinowski, B.E., Schweda, P., 1996. Kinetics of muscovite,phlogopite and biotite dissolution and alteration at pH 1–4,room temperature. Geochim. Cosmochim. Acta 60, 367–385. Kenoyer, G.J., Bowser, C.J., 1992. Groundwater chemical evolution in a sandy silicate aquifer in northern Wisconsin: 2. Reaction modeling. Water Resour. Res. 28, 591–600. Knauss, K.G., Nguyen, S.N., Weed, H.C., 1993. Diopside dissolution kinetics as function of pH, CO2, temperature, and time. Geochim. Cosmochim. Acta 57, 285–294. Kristmannsdottir, H., 1978. Alteration of basaltic rocks by hydrothermal activity at 100–300 8C. Int. Clay Conference. Elsevier, Amsterdam, pp. 359–367. Kristmanndottir, H., 1982. Alteration in the IRDP drill hole compared with other drill holes in Iceland. J. Geophys. Res. 87, 6525–6531. Langmuir, D., 1978. Uranium solution-mineral equilibria at low temperatures with application to sedimentary ore deposits. Geochim. Cosmochim. Acta 42, 547–569. Langmuir, D., 1996. Aqueous environmental geochemistry. Prentice Hall Publishers, New Jersey. Lasaga, A.C., 1981. Transition state theory. In: Lasaga, A.C.,Kirkpatrick, R.J. (Eds.), Kinetics of Geochemical Processes,Rev. Mineral. vol. 8, pp. 135–169. Lasaga, A.C., 1984. Chemical kinetics of water–rock interactions. J. Geophys. Res. 89, 4009– 4025. Lichtner, P.C., 1988. The quasi-stationary state approximation to coupled mass transport and fluid–rock interaction in a porous medium. Geochim. Cosmochim. Acta 52, 143–165. Marini, L., Ottonello, G., Canepa, M., Cipolli, F., 2000. Water–rock interaction in the Bisagno Valley (Genoa, Italy): application of an inverse approach to model spring water chemistry. Geochim. Cosmochim. Acta 64, 2617–2635. Marini, L., Canepa, M., Cipolli, F., Ottonello, G., Vetuschi Zuccolini, M., 2001. Use of stream sediment chemistry to predict trace element chemistry of groundwater. A case study from the Bisagno valley (Genoa, Italy). J. Hydrol. 241, 194–220. Meybeck, M., 1987. Global chemical weathering of surficial rocks estimated from river dissolved loads. Am. J. Sci. 287, 401–428. Nieboer, E., Richardson, D.H.S., 1980. The replacement of the nondescriptive term heavy metals by a biologically and chemically significant classification of metal ions. Environ. Pollut. Ser. B 1,3–26. Norton, D., 1974. Chemical mass transfer in the Rio Tanama System, west-central Puerto Rico. Geochim. Cosmochim. Acta 38, 267–277. A. Aiuppa et al. / Chemical Geology 216 (2005) 289–311 309 Oelkers, E.H., 2001. A general kinetic description of multi-oxide silicate mineral and glass dissolution. Geochim. Cosmochim. Acta 65, 3703–3719. Oelkers, E.H., Gislason, S.R., 2001. The mechanism, rates and consequences of basaltic glass dissolution: I. An experimental study of the dissolution rates of basaltic glass as a function of aqueous Al, Si and oxalic acid concentration at 25 8C and pH=3 and 11. Geochim. Cosmochim. Acta 65,3671–3681. Oelkers, E.H., Schott, J., 2001. An experimental study of enstatite dissolution rates as a function of pH, temperature, and aqueous Mg and Si concentration, and the mechanism of pyroxene/pyroxenoid dissolution. Geochim. Cosmochim. Acta 65, 1219–1231. Oelkers, E.H., Schott, J., Devidal, J.L., 1994. The effect of aluminium, pH and chemical affinity on the rates of aluminosilicate dissolution reactions. Geochim. Cosmochim. Acta 58, 2011–2024. Paces, T., 1973. Steady-state kinetics and equilibrium between groundwater and granitic rock. Geochim. Cosmochim. Acta 37, 2641–2663. Paces, T., 1978. Reversible control of aqueous aluminium and silica during the irreversible evolution of natural waters. Geochim. Cosmochim. Acta 42, 1487–1493. Paces, T., 1983. Rate constants of dissolution derived from the measurements of mass balance in hydrological catchments. Geochim. Cosmochim. Acta 47, 1855–1864. Paone, A., Ayuso, R.A., De Vivo, B., 2001. A metallogenic survey of alkalic rocks of Mt. Somma–Vesuvius volcano. Mineral. Petrol. 73, 201–233. Parsons, M.B., Bird, D.K., Einaudi, M.T., Alpers, C.N., 2001. Geochemical and mineralogical controls on trace element release from the Penn mine base-metal slag dump, California. Appl. Geochem. 16, 1567–1593. Pokrovski, O., Schott, J., 2000. Kynetics and mechanism of forsterite dissolution at 25 8C and pH from 1 to 12. Geochim. Cosmochim. Acta 64, 3313–3326. Pokrovski, G.S., Schott, J., Salvi, S., Gout, R., Kubicki, J.D., 1998. Structure and stability of alumino-silica complexes in neutral to basic solutions: experimental study and molecular orbital. Mineral. Mag. 62A, 1194–1197. Rai, D., Sass, B.M., Moore, D.A., 1987. Chromium hydrolysis constants and stability of chromium(III) hydroxide. Inorg. Chem. 26, 345–349. Santacroce, R., 1983. A general model for the behaviour of the Somma–Vesuvius volcanic complex. J. Volcanol. Geotherm. Res. 17, 237–248. Santacroce, R. (Ed.), 1987. Somma–Vesuvius complex. CNR Quad. Ric. Sci., vol. 114, 8. 251 pp. Sciuto, P.F., Ottonello, G., 1995a. Water–rock interaction on Zabargad Island (Red Sea), a case study: I. Application of the concept of local equilibrium. Geochim. Cosmochim. Acta 59, 2187–2206. Sciuto, P.F., Ottonello, G., 1995b. Water–rock interaction on Zabargad Island (Red Sea), a case study: II. From local equilibrium to irreversible exchanges. Geochim. Cosmochim. Acta 59, 2207– 2213. Shannon, R.D., Prewitt, C.T., 1969. Effective ionic radii in oxides and fluorides. Acta Crystallogr., B 25, 925–946. Shannon, R.D., Prewitt, C.T., 1970. Revised values of effective ionic radii. Acta Crystallogr., B 26, 1046–1048. Silber, A., Bar-Yosef, B., Chen, Y., 1999. pH-dependent kinetics of tuff dissolution. Geoderma 93, 125–140. Smith, C.L., Drever, J.I., 1976. Controls on the chemistry of springs at Teels Marsh, Mineral County, Nevada. Geochim. Cosmochim. Acta 40, 1081–1093. Stumm, W., Morgan, J.J., 1996. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters. Wiley-Interscience Publication, New Jersey. Sverdrup, H., 1990. The Kinetics of Base Cation Release due to Chemical Weathering. Lund University Press. 245 pp. Sverjensky, D.A., 1984. Prediction of Gibbs free energies of calcitetype carbonates and the equilibrium distribution of trace elements between carbonates and aqueous solutions. Geochim. Cosmochim. Acta 48, 1127–1134. Swodoba-Colberg, N.G., Drever, J.D., 1993. Mineral dissolution rates in plot-scale field and laboratory experiments. Chem. Geol. 105, 51–69. Tole, M.P., Lasaga, A.C., Pantano, C., White, W.B., 1986. Factors controlling the kinetics of nepheline dissolution. Geochim. Cosmochim. Acta 50, 379–392. Trigila, R., De Benedetti, A.A., 1993. Petrogenesis of Vesuvius historical lavas constrained by Pearce element ratios analysis and experimental phase equilibria. J. Volcanol. Geotherm. Res. 58, 315–343. Turner, D.R., Whitfield, M., Dickson, A.G., 1981. The equilibrium speciation of dissolved components in freshwater and seawater at 25 8C and 1 atm pressure. Geochim. Cosmochim. Acta 45, 855–882. Ventura, G., Vilardo, G., Bruno, P.P., 1999. The role of flank collapse in modifying the shallow plumbing system of volcanoes: an example from Somma–Vesuvius, Italy. Geophys. Res. Lett. 26, 3681–3684. Wagman, D.D., Evans, W.H., Parker, V.B., Schumm, R.H., Halow,I., Bailey, S.M., et al., 1982. The NBS tables of chemical thermodynamic properties: selected values for inorganic and C1 and C2 organic substances in SI units. J. Phys. Chem. Ref. Data 11 (Suppl. 2) (392 pp.). Welch, S.A., Ullman, W.J., 1996. Feldspar dissolution in acidic and organic solutions: compositional and pH dependence of dissolution rate. Geochim. Cosmochim. Acta 60, 2939–2948. White, A.F., 1995. Chemical weathering rates of silicate minerals in soils. White, A.F., Brantley, S.L. Rev. Mineral., vol. 31, pp. 408–461. White, A.F., Brantley, S.L. (Eds.), 1995. Chemical Weathering Rates of Silicate Minerals. Rev. Mineral., vol. 31. Mineralogical Society of America, Washington, DC. 583 pp. White, A.F., Blum, A.E., Schulz, M.S., Bullen, T.D., Harden, J.W., Peterson, M.L., 1996. Chemical weathering of a soil chronosequence: 1. Reaction rates based on soil state properties. Geochim Cosmochim. Acta 60, 2533–2550. Wieland, E., Wehrli, B., Stumm, W., 1988. The coordination chemistry of weathering: III. A generalization on the dissolution rates of minerals. Geochim. Cosmochim. Acta 52,1969–1981. Wogelius, R.A., Walther, J.V., 1991. Olivine dissolution at 25 degrees C: effects of pH, CO2 and organic acids. Geochim. Cosmochim. Acta 55, 943–954. Wolery, T.J., 1992. EQ3NR, a computer program for geochemical aqueous speciation-solubility calculations: theoretical manual, user’s guide and related documentation (version 7.0). Report UCRl-MA-110662 PT III. Lawrence Livermore National Laboratory, Livermore, California. Wolery, T.J., 1994. EQ3NR, Letter report: EQ3/6 version 8.0. Differences from version 7. UCRL-ID-129749. Lawrence Livermore National Laboratory, Livermore, California. Wolery, T.J., Daveler, S.A., 1992. EQ6, a computer program for reaction path modeling of aqueous geochemical systems: theoretical manual, user’s guide and related documentation (version 7.0). Report UCRl-MA-110662 PT IV. Lawrence Livermore National Laboratory, Livermore, California. Wood, B.J., Trigila, R., 2001. Experimental determination of aluminous clinopyroxene-melt partition coefficients for potassic liquids, with application to the evolution of the Roman province potassic magmas. Chem. Geol. 172, 213–223. Zachara, J.M., Cowan, C.E., Resch, C.T., 1991. Sorption of divalent metals on calcite. Geochim. Cosmochim. Acta 55,1549–1562.en
dc.description.fulltextpartially_openen
dc.contributor.authorAiuppa, A.en
dc.contributor.authorFederico, C.en
dc.contributor.authorAllard, P.en
dc.contributor.authorGurrieri, S.en
dc.contributor.authorValenza, M.en
dc.contributor.departmentDipartimento CFTA, Universita` di Palermo, via Archirafi 36, 90123 Palermo, Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.departmentLaboratoire Pierre Su¨e, CNRS-CEA, CE-Saclay, 91191 Gif/Yvette, Franceen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.departmentDipartimento CFTA, Universita` di Palermo, via Archirafi 36, 90123 Palermo, Italyen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptDiSTeM, Universit a degli Studi di Palermo, Palermo, Italy-
crisitem.author.orcid0000-0002-0254-6539-
crisitem.author.orcid0000-0001-8887-2580-
crisitem.author.orcid0000-0001-7836-3117-
crisitem.author.orcid0000-0003-4085-0440-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent05. General-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Aiuppa et al. Chem.Geol. 2005.pdfMain article1.1 MBAdobe PDF
Redirect Elsevier.htmlRedirect-Elsevier539 BHTMLView/Open
Show simple item record

WEB OF SCIENCETM
Citations

45
checked on Feb 10, 2021

Page view(s) 10

360
checked on Apr 17, 2024

Download(s)

69
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric