Earth-prints repository, logo   DSpace

About DSpace Software
|earth-prints home page | roma library | bologna library | catania library | milano library | napoli library | palermo library
Please use this identifier to cite or link to this item:

Authors: De Siena, L.*
Del Pezzo, E.*
Bianco, F.*
Tramelli, A.*
Title: Multiple resolution seismic attenuation imaging at Mt. Vesuvius
Title of journal: Physics of the Earth and Planetary Interiors
Series/Report no.: / (2008)
Publisher: Elsevier
Issue Date: 2008
DOI: 10.1016/j.pepi.2008.10.015
Keywords: Attenuation tomography
Mt. Vesuvius
Coda normalization method
Spectral slope
Multi resolution inversion
Abstract: A three-dimensional S wave attenuation tomography of Mt. Vesuvius has been ob- tained with multiple measurements of coda-normalized S-wave spectra of local small magnitude earthquakes. We used 6609 waveforms, relative to 826 volcano-tectonic earthquakes, located close to the crater axis in a depth range between 1 and 4 km (below the sea level), recorded at seven 3-component digital seismic stations. We adopted a two-point ray-tracing; rays were traced in an high resolution 3-D velocity model. The spatial resolution achieved in the attenuation tomography is comparable with that of the velocity tomography (we resolve 300 m side cubic cells). We statisti- cally tested that the results are almost independent from the radiation pattern. We also applied an improvement of the ordinary spectral-slope method to both P- and S-waves, assuming that the di¤erences between the theoretical and the experimental high frequency spectral-slope are only due to the attenuation e¤ects.We could check the coda-normalization method comparing the S attenuation image obtained with the two methods. The images were obtained with a multiple resolution approach. Results show the general coincidence of low attenuation with high velocity zones. The joint interpretation of velocity and attenuation images allows us to interpret the low attenuation zone intruding toward the surface until a depth of 500 meters below the sea level as related to the residual part of solidi ed magma from the last eruption. In the depth range between -700 and -2300 meters above sea level, the images are consistent with the presence of multiple acquifer layers. No evidence of magma patches greater than the minimum cell dimension (300m) has been found. A shallow P wave attenuation anomaly (beneath the southern ank of the volcano) is consitent with the presence of gas saturated rocks. The zone characterized by the maximum seismic energy release cohincides with a high attenuation and low velocity volume, interpreted as a cracked medium.
Appears in Collections:04.06.07. Tomography and anisotropy
Papers Published / Papers in press

Files in This Item:

File Description SizeFormatVisibility
n. 3 PEPI-DeSienaetal2008 Vesuvio MRTomoatt.pdfPre-print of the accepted article2.4 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Share this record




Stumble it!



Valid XHTML 1.0! ICT Support, development & maintenance are provided by CINECA. Powered on DSpace Software. CINECA