Earth-prints repository, logo   DSpace

About DSpace Software
|earth-prints home page | roma library | bologna library | catania library | milano library | napoli library | palermo library
Please use this identifier to cite or link to this item:

Authors: Morasca, P.*
Mayeda, K.*
Gok, R.*
Phillips, S.*
Malagnini, L.*
Title: 2-D Coda and Direct Wave Attenuation Tomography in Northern Italy
Title of journal: Bulletin of the Seismological Society of America
Series/Report no.: 4/98 (2008)
Publisher: Seismological Society of America
Issue Date: 2008
DOI: 10.1785/0120070089
Keywords: Attenuation tomography
Abstract: A 1D coda method was proposed by Mayeda et al. (2003) in order to obtain stable seismic source moment-rate spectra using narrowband coda envelope measurements. That study took advantage of the averaging nature of coda waves to derive stable amplitude measurements taking into account all propagation, site, and S-to-coda transfer function effects. Recently, this methodology was applied to microearthquake data sets from three subregions of northern Italy (i.e., western Alps, northern Apennines, and eastern Alps). Because the study regions were small, ranging between local-to-near-regional distances, the simple 1D path assump- tions used in the coda method worked very well. The lateral complexity of this region would suggest, however, that a 2D path correction might provide even better results if the data sets were combined, especially when paths traverse larger distances and com- plicated regions. The structural heterogeneity of northern Italy makes the region ideal to test the extent to which coda variance can be reduced further by using a 2D Q tomography technique. The approach we use has been developed by Phillips et al. (2005) and is an extension of previous amplitude ratio techniques to remove source effects from the inversion. The method requires some assumptions, such as isotropic source radiation, which is generally true for coda waves. Our results are compared against direct S-wave inversions for 1/Q and results from both share very similar attenuation features that coincide with known geologic structures. We compare our results with those derived from direct waves as well as some recent results from northern California obtained by Mayeda et al. (2005) that tested the same tomo- graphic methodology applied in this study to invert for 1/Q. We find that 2D coda path corrections for this region significantly improve upon the 1D corrections, in contrast to California where only a marginal improvement was observed. We attribute this difference to stronger lateral variations in Q for northern Italy relative to California.
Appears in Collections:04.06.09. Waves and wave analysis
Papers Published / Papers in press

Files in This Item:

File SizeFormatVisibility
Morasca_etal_2008.pdf936.56 kBAdobe PDFView/Open

This item is licensed under a Creative Commons License
Creative Commons

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Share this record




Stumble it!



Valid XHTML 1.0! ICT Support, development & maintenance are provided by CINECA. Powered on DSpace Software. CINECA