Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/4122
DC FieldValueLanguage
dc.contributor.authorallde Lorenzo, S.; Dipartimento di Geologia e Geofisica and Centro Interdipartimentale per la Valutazione e Mitigazione del Rischio Sismico e Vulcanico, Università di Bari, Bari, Italy.en
dc.contributor.authorallFilippucci, M.; Dipartimento di Geologia e Geofisica and Centro Interdipartimentale per la Valutazione e Mitigazione del Rischio Sismico e Vulcanico, Università di Bari, Bari, Italy.en
dc.contributor.authorallBoschi, E.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione AC, Roma, Italiaen
dc.date.accessioned2008-10-23T09:00:55Zen
dc.date.available2008-10-23T09:00:55Zen
dc.date.issued2008en
dc.identifier.urihttp://hdl.handle.net/2122/4122en
dc.description.abstractAn empirical Green’s function (EGF) technique has been developed to detect the rupture velocity history of a small earthquake. The assumed source model is a circular crack that is characterized by a single and unipolar moment rate function (MRF). The deconvolution is treated as an inverse problem in the time domain, which involves an assumed form of the moment rate function (MRF). The source parameters of the MRF are determined by adopting a global nonlinear inversion scheme. A thorough synthetic study on both synthetic and real seismograms allowed us to evaluate the degree of reliability of the retrieved model parameters. The technique was applied to four small events that occurred in the Umbria-Marche region (Italy) in 1997. To test the hypothesis of a single rupture process, the inversion results were compared with those arising from another EGF technique, which assumes a multiple rupture process. For each event, the best fit model was selected using the corrected Akaike Information Criterion. For all the considered events the most interesting result is that the selected best fit model favors the hypothesis of a single faulting process with a clear variability of the rupture velocity during the process. For the studied events, the maximum rupture speed can even approach the P-wave velocity at the source, as theoretically foreseen in studies of the physics of the rupture and recently observed for high-magnitude earthquakes.en
dc.language.isoEnglishen
dc.publisher.nameAGUen
dc.relation.ispartofJournal of geophysical researchen
dc.relation.ispartofseriesb10 / 113 (2008)en
dc.subjectEGF techniqueen
dc.titleAn EGF technique to infer the rupture velocity history of a small magnitude earthquakeen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberB10314en
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolutionen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamicsen
dc.identifier.doi10.1029/2007JB005496en
dc.relation.referencesAbdel-Fattah, A. K., and A. Badawy (2002), Source process of the southeast Beni-Suef, northern Egypt earthquake using empirical Green’s function technique, J. Seismol., 6, 153– 161. Abercrombie, R. E. (1995), Earthquake source scaling relationships from 1 to 5 ML using seismograms recorded at 2.5 km depth, J. Geophys. Res., 100(B12), 24,015– 24,036. Akaike, H. (1973), Information theory as an extension of the maximum likelihood principle, in Second International Symposium on Information Theory, edited by B. N. Petrov and F. Csaki, pp. 267– 281, Akademiai Kiado, Budapest. Ammon, C. J., T. Lay, A. A. Velasco, and J. E. Vidale (1994), Routine estimation of earthquake source complexity: The 18 October 1992 Colombian earthquake, Bull. Seismol. Soc. Am., 84(4), 1266–1271. Azimi, S. A., A. V. Kalinin, V. V. Kalinin, and B. L. Pivovarov (1968), Impulse and transient characteristic of media with linear and quadratic absorption laws, Izv. Russ. Acad. Sci. Phys. Solid Earth, Engl. Transl., 2, 88– 93. Beeler, N. M., T.-F. Wong, and S. H. Hickman (2003), On the expected relationships among apparent stress, static stress drop, effective shear fracture energy, and efficiency, Bull. Seismol. Soc. Am., 93(3), 1381– 1389. Bernard, P., and R. Madariaga (1984), A new asymptotic method for the modelling of near-field accelerograms, Bull. Seismol. Soc. Am., 74, 539– 557. Bindi, D., D. Spallarossa, P. Augliera, and M. Cattaneo (2001), Source parameters estimated from the aftershocks of the 1997 Umbria-Marche seismic sequence, Bull. Seismol. Soc. Am., 91, 448– 455. Boatwright, J. (1980), A spectral theory for circular seismic sources: Simple estimates of source dimension, dynamic stress drop and radiated seismic energy, Bull. Seismol. Soc. Am., 70, 1 – 28. Boatwright, J. (1981), Quasi-dynamic models of simple earthquakes: Application to an aftershock of the 1975 Oroville, California, earthquake, Bull. Seismol. Soc. Am., 71, 69– 94. Boatwright, J. (1984), The effect of rupture complexity in estimate of source size, J. Geophys. Res., 89(B2), 1132–1146. Bouchon, M. (1979), Discrete wave number representation of elastic wave ields in three-space dimensions, J. Geophys. Res., 84(B7), 3609–3614. Bouchon, M. (1981), A simple method to calculate Green’s functions for elastic layered media, Bull. Seismol. Soc. Am., 71, 959– 971. Brune, J. (1970), Tectonic stress and the spectra of seismic shear waves from earthquakes, J. Geophys. Res., 75(26), 4997– 5009. Burnham, K. P., and D. R. Anderson (2002), Model Selection and Multimodel Inference: A Practical Information-Theoretical Approach, 2nd ed., Springer-Verlag, New York. Cattaneo, M., et al. (2000), The 1997 Umbria-Marche (Italy) earthquake sequence: Analysis of data recorded by the local and temporary network, J. Seismol., 4, 401– 414. Chouet, B., P. Dawson, and A. Arciniega-Ceballos (2005), Source mechanism of Vulcanian degassing at Popocate’petl Volcano, Mexico, determined from waveform inversions of very long period signals, J. Geophys. Res., 110, B07301, doi:10.1029/2004JB003524. Clayton, R. W., and R. A. Wiggins (1976), Source shape estimation and deconvolutionof teleseismic body waves, Geophys. J. R. Astron. Soc., 47, 151– 177. Courboulex, F., J. Virieux, A. Deshamps, D. Gibert, and A. Zollo (1996), Source investigation of small event using empirical Green’s function and simulated annealing, Geophys. J. Int., 125, 768– 780. Das, S. (2007), The need to study speed, Science, 317(5840), 905– 906. Deichmann, N. (1997), Far-field pulse shape from circular sources with variable rupture velocities, Bull. Seismol. Soc. Am., 87(5), 1288– 1296. Ellsworth, W. L., and G. C. Beroza (1998), Observation of the seismic nucleation phase in the Ridgecrest, California, earthquake sequence, Geophys. Res. Lett., 25(2), 401–404. Emolo, A., and A. Zollo (2005), Kinematic source parameters for the 1989 Loma Prieta earthquake from the nonlinear inversion of accelerograms., Bull. Seismol. Soc. Am., 95(3), 981– 994, doi:10.1785/0120030193. Eshelby, J. D. (1957), The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc. R. Soc. Lond., 241, 376– 396. Filippucci, M., S. de Lorenzo, and E. Boschi (2006), Fault plane orientations of small earthquakes of the 1997 Umbria-Marche (Italy) seismic sequence from P-wave polarities and rise times, Geophys. J. Int., 166(1), 322– 338, doi:10.1111/j.1365-246X.2006.02998.x. Fischer, T. (2005), Modelling of multiple events using empirical Green’s functions: method, application to swarm earthquakes and implications for their rupture propagation, Geophys. J. Int., 163(3), 991 – 1005, doi:10.1111/j.1365-246X.2005.02739.x. Frankel, A., J. Fletcher, F. Vernon, L. Haar, J. Berger, T. Hanks, and J. Brune (1986), Rupture characteristics and tomographic source imaging of ML_3 earthquakes near Anza, Southern California, J. Geophys. Res., 91(B12), 12,633– 12,650. Govoni, A., D. Spallarossa, P. Augliera, and L. Troiani (1999), The 1997 Umbria-Marche earthquake sequence: The combined data set of the GNDT/SSN temporary and the RESIL/RSM permanent seismic networks (Oct. 18–Nov. 3, 1997), Project GNDT-CNR: PROGETTO ESECUTIVO 1998, 6a1, ‘‘Struttura e sorgente della sequenza’’ (CoordinatorM. Cattaneo) (On electronic CD-ROM Support). Hartzell, S. (1978), Earthquake aftershocks as Green’s functions, Geophys. Res. Lett., 5(1), 1 – 4. Hiramatsu, Y., M. Furumoto, K. Nishigami, and S. Ohmi (2002), Initial rupture process of microearthquakes recorded by high sampling borehole seismographs at the Nojima fault, central Japan, Phys. Earth Planet. Int., 132, 269– 279. Hurvich, C. M., and C.-L. Tsai (1995), Model selection for extended quasilikelihood models in small samples, Biometrics, 51, 1077– 1084. Iio, Y. (1995), Observation of the slow initial phase generated by microearthquakes: Implications for earthquake nucleation and propagation, J. Geophys. Res., 100(B8), 15,333– 15,349. Iio, Y., S. Ohmi, R. Ikeda, E. Yamamoto, H. Ito, H. Sato, Y. Kuwahara, T. Ohminato, B. Shibazaki, and M. Ando (1999), Slow initial phase generated by microearthquakes occurring in the Western Nagano prefecture, Japan - the source effect, Geophys. Res. Lett., 26(13), 1969 – 1972, 10.1029/1999GL900404. Imanishi, K.,M. Takeo,W. L. Ellsworth, H. Ito, T. Matsuzawa, Y. Kuwahara, Y. Iio, S. Horiuchi, and S. Ohmi (2004), Source parameters and rupture velocities of microearthquakes in Western Nagano, Japan, determined using stopping phases, Bull. Seismol. Soc. Am., 94(5), 1762– 1780. Li, Y., C. Doll Jr., and M. N. Tokso¨z (1995), Source characterization and fault plane determinations for MbLg_1.2 to 4.4 earthquakes in the Charlevoix seismic zone, Quebec, Canada, Bull. Seismol. Soc. Am., 85, 1604– 1621. Kanamori, H. (1977), The energy release in great earthquakes, J. Geophys. Res., 82(20), 2981–2987. Kanamori, H., and L. Rivera (2004), Static and dynamic scaling relations for earthquakes and their implications for rupture speed and stress drop, Bull. Seismol. Soc. Am., 94(1), 314– 319. Kikuchi, M., and H. Kanamori (1982), Inversion of complex body waves, Bull. Seismol. Soc. Am., 72(2), 491– 506. Kostrov, B. V., and S. Das (1988), Principles of Earthquake Source Mechanics, 286 pp., Cambridge Univ. Press, New York. Mori, J., and A. Frankel (1990), Source parameters for small events associated with the 1996 North Palm Springs, California, earthquake determined using empirical Green’s functions, Bull. Seismol. Soc. Am., 80(2), 278–295. Mori, J., and H. Kanamori (1996), Initial rupture of earthquakes in the 1995 Ridgecrest, California sequence, Geophys. Res. Lett., 23(18), 2437 – 2440. Mueller, C. S. (1985), Source pulse enhancement by deconvolution of an empirical Green’s function, Geophys. Res. Lett., 12(1), 33– 36. Nadeau, M., and L. R. Johnson (1998), Seismological studies at Parkfield: VI. Moment release rates and estimates of source parameters for small repeating earthquakes, Bull. Seismol. Soc. Am., 88(3), 790– 814. Nakano, M., and H. Kumagai (2005), Waveform inversion of volcanoseismic signals assuming possible source geometries, Geophys. Res. Lett., 32, L12302, doi:10.1029/2005GL022666. Prejean, S. G.,W. L. Ellsworth, M. Zoback, and F.Waldhauser (2002), Fault structure and kinematics of the Long Valley Caldera region, California, revealed by high-accuracy earthquake hypocenters and focal mechanism stress inversions, J. Geophys. Res., 107(B12), 2355, doi:10.1029/ 2001JB001168. Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling (1989), Numerical Recipes, The Art of Scientific Computing (Fortran Version), Cambridge Univ. Press, Cambridge. Reasenberg, P., and D. H. Oppheneimer (1985), FPFIT, FPPLOT and FPPAGE: FORTRAN computer program for calculating and displaying earthquake fault-plane solutions, U.S. Geol. Surv. Rep., 85– 739. Sato, T. (1994), Seismic radiation from circular cracks growing at variable rupture velocity, Bull. Seismol. Soc. Am., 84(4), 1199– 1215. Sato, T., and T. Hirasawa (1973), Body wave spectra from propagating shear cracks, J. Phys. Earth, 21, 415– 431. Sato, T., and H. Kanamori (1999), Beginning of earthquakes modeled with the Griffith’s fracture criterion, Bull. Seismol. Soc. Am., 89, 80– 93. Sato, K., and J. Mori (2006a), Relation between rupture complexity and earthquake size for two shallow earthquake sequences in Japan, J. Geophys. Res., 111, B05307, doi:10.1029/2005JB003614. Sato, K., and J. Mori (2006b), Scaling relationship of initiations for moderate to large earthquakes, J. Geophys. Res., 111, B05306, doi:10.1029/ 2005JB003613. Scherbaum, F. (1990), Combined inversion for the three-dimensional Q structure and source parameters using microearthquake spectra, J. Geophys. Res., 95(B8), 12,423– 12,438. Scherbaum, F., and J. Johnson (1992), PITSA, programmable interactive toolbox for seismological analysis, IASPEI Software Library, 5. Singh, S. K., M. Ordaz, T. Mikumo, J. Pacheco, C. Valde´s, and P. Mandal (1998), Implications of a composite source model and seismic-wave attenuation for the observed simplicity of small earthquakes and reported duration of earthquake initiation phase, Bull. Seismol. Soc. Am., 88(5), 1171–1181. Singh, S.K., J. F. Pacheco, B. K. Bansal, X. Pe´rez-Campos, R. S. Dattatrayam, and G. Suresh (2004), A source study of the Bhuj, India, earthquake of 26 January 2001 (Mw 7.6), Bull. Seismol. Soc. Am., 94(4), 1195–1206. Sugiura, N. (1978), Further analysis of the data by Akaike’s information criterion and the finite corrections, Commun. Stat. - Theory Methods, A7, 13– 26. Telford, W. M., L. P. Geldart, R. E. Sheriff, and D. A. Keys (1990), Applied Geophysics, 2nd ed. Cambridge Univ. Press, Cambridge. Thio, H. K., and H. Kanamori (1996), Source complexity of the 1994 Northridge earthquake and its relation to aftershock mechanisms, Bull. Seismol. Soc. Am., 86(1B), 84– 92. Valle`e, M. (2004), Stabilizing the empirical green function analysis: Development of the projected Landweber method, Bull. Seismol. Soc. Am., 94(2), 394–409. Valle`e, M. (2007), Rupture properties of the Giant Sumatra earthquake imaged by empirical, Bull. Seismol. Soc. Am., 97(1A), S103 –S114, doi: 10.1785/0120050616. Vasco, D. W., and L. R. Johnson (1998), Whole earth structure estimated from seismic arrival times, J. Geophys. Res., 103(B2), 2633–2672. Zollo, A., and S. de Lorenzo (2001), Source parameters and three-dimensional attenuation structure from the inversion of microearthquake pulse width data: Method and synthetic tests, J. Geophys. Res., 106(B8), 16,287– 16,306. Zollo, A., P. Capuano, and S. K. Sing (1995), Use of small earthquake records to determine the source time functions of larger earthquakes: An alternative method and an application, Bull. Seismol. Soc. Am., 85(4), 1249– 1256.en
dc.description.obiettivoSpecifico3.1. Fisica dei terremotien
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorde Lorenzo, S.en
dc.contributor.authorFilippucci, M.en
dc.contributor.authorBoschi, E.en
dc.contributor.departmentDipartimento di Geologia e Geofisica and Centro Interdipartimentale per la Valutazione e Mitigazione del Rischio Sismico e Vulcanico, Università di Bari, Bari, Italy.en
dc.contributor.departmentDipartimento di Geologia e Geofisica and Centro Interdipartimentale per la Valutazione e Mitigazione del Rischio Sismico e Vulcanico, Università di Bari, Bari, Italy.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione AC, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptDipartimento di Scienze della Terra e Geoambientali, University of Bari, Italy-
crisitem.author.deptDipartimento di Scienze della Terra e Geoambientali, University of Bari, Italy-
crisitem.author.orcid0000-0003-2504-1485-
crisitem.author.orcid0000-0002-3015-5527-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
articolo.pdf3.25 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

7
checked on Feb 10, 2021

Page view(s) 50

173
checked on Apr 17, 2024

Download(s)

26
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric