Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/4107
DC FieldValueLanguage
dc.contributor.authorallRigano, S.; Dipartimento di Scienze Geologiche, Università di Catania, Catania, Italiaen
dc.contributor.authorallCara, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallLombardo, G.; Dipartimento di Scienze Geologiche, Università di Catania, Catania, Italiaen
dc.contributor.authorallRovelli, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.date.accessioned2008-10-07T11:43:12Zen
dc.date.available2008-10-07T11:43:12Zen
dc.date.issued2008-07-22en
dc.identifier.urihttp://hdl.handle.net/2122/4107en
dc.description.abstractDuring local and regional earthquakes, an evident amplification of horizontal ground motion is observed at two seismological stations near the Tremestieri fault, on the southeastern flank of Mt. Etna volcano. Rotated-component spectral ratios show a narrow spectral peak around 4-Hz along a N40°E direction. A conventional polarization analysis using the eigenvectors of the covariance matrix confirms the very stable directional effect enhancing the approximately NE-SW elongation of the horizontal ground motion in the fault zone. The effect is evident during the entire seismogram and independent of source backazimuth as well as distance and depth of earthquakes. The same polarization is observed in ambient noise as well. This consistency allowed us to use microtremors for checking ground motion polarization along and across the Tremestieri fault zone with a high spatial resolution. The result is a stable polarization of horizontal motion in the entire area, interesting a broad frequency band. To check whether this ground motion property is recurrent and understand a possible relationship with fault strike, faulting style, or orientation of fractures, ambient noise was recorded on other mapped faults of the Mt. Etna area, the Moscarello, Acicatena and Pernicana faults. The latter, in particular, is characterized by different strike and faulting style. A systematic tendency of ambient noise to be polarized is found in all of the faults. A picture emerges where normal faults of the eastern flank show a E-W to NE-SW polarization that changes on the Pernicana fault, which develops approximately E-W and is characterized by a prevailing NW-SE to NS polarization. Directions of polarization were never parallel to the fault strike. Moreover, polarization persists too far away from the fault trace, excluding an effect limited to a narrow low velocity zone hosted between harder wall rocks. Both these observations rule out an interpretation in terms of fault-trapped waves. The cause of observed polarizations will be the subject of future studies. However, the consistency with recent results of velocity anisotropy in a part of the investigated area suggests a possible role of attenuation anisotropy on horizontal amplitude variations versus azimuth.en
dc.language.isoEnglishen
dc.publisher.nameAGUen
dc.relation.ispartofJournal of Geophysical Researchen
dc.relation.ispartofseries/113 (2008)en
dc.subjectpolarizationen
dc.subjectfault zonesen
dc.subjectEtna volcanoen
dc.subjectmicrotremorsen
dc.titleEvidence for ground motion polarization on fault zones of mt. etna volcanoen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberB10306en
dc.identifier.URLhttp://www.agu.org/journals/pip/jb/2007JB005574-pip.pdfen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.04. Ground motionen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoringen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismologyen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysisen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.11. Seismic risken
dc.identifier.doi10.1029/2007JB005574en
dc.relation.referencesAzzaro, R. (1999), Earthquake surface faulting at Mount Etna volcano (Sicily) and implications for active tectonics, J. Geodyn., 28, 193-213. Azzaro, R., L. Ferreli, A. M. Michetti, L. Serva, E. Vittori (1998), Environmental hazard of capable faults: the case of the Pernicana fault (Mt. Etna, Sicily), Natural Hazard, 17, 147-162. Azzaro, R., D. Bella, L. Ferreli, A. M. Michetti, F. Santagati, L. Serva, E. Vittori (2000), First study of fault trench stratigraphy at Mt. Etna volcano, Southern Italy: understanding Holocene surface faulting along the Moscarello fault, J. Geodyn., 29 (3-5), 187-210. Azzaro, R., M. Mattia, G. Puglisi (2001), Dynamics of fault creep and kinematics of the eastern segment of the Pernicana fault (Mt. Etna, Sicily) derived from geodetic observations and their tectonic significance, Tectonophysics, 333 (3-4), 401-415. Azzaro, R. (2004), Seismicity and active tectonics in the Etna region: constraints for a seismotectonic model, in Mt. Etna: volcano laboratory, vol. 143, edited by A. Bonaccorso, S. Calvari, M. Coltelli, C. Del Negro and S. Falsaperla, pp. 205-219, AGU monograph. Bard, P.Y. (1999), Microtremor measurements: a tool for site effect estimation?, in The Effects of Surface Geology on Seismic Motion, Irikura, edited by Kudo, Okada, Sasatani, pp. 1251-1279, Balkema, Rotterdam. Ben-Zion, Y., and K. Aki (1990), Seismic radiation from an SH line source in a laterally heterogeneous planar fault zone, Bull. Seism. Soc. Am., 80, 971-994. Ben-Zion, Y., Z. Peng, D. Okaya, L. Seeber, J.G. Armbruster, N. Ozer, A.J. Michael, S. Baris, and M. Aktar (2003), A shallow fault-zone structure illuminated by trapped waves in the Karadere-Duzce branch of the North Anatolian Fault, western Turkey, Geophys. J. Int., 152, 1-19. Bianco, F., M. Castellano, G. Milano, and G. Vilardo (1996), Shear-wave polarization alignment on the eastern flank of Mt.Etna volcano (Sicily, Italy), Annali di Geofisica, XXXIX, 2, 429-443. Bianco, F., and L. Zaccarelli, A reappraisal of shear wave splitting parameters from Italian active volcanic areas through a semi-automatic algorithm. Journal of Seismology, in press. Bones, N.L. and M.D. Zoback (2006), Mapping stress and structurally controlled crustal shear velocity anisotropy in California, Geology, 34, 10, 825-828. Bonnefoy-Claudet, S. (2004), Nature du bruit de fond sismique: implications pour les études des effets de site, Docteur Thèse, 234 pp., Université J. Fourier – Grenoble 1, in SESAME project http://sesame-fp5.obs.ujf-grenoble.fr/. Boore, D. M., V. M. Graizer, J. C. Tinsley, and A. F. Shaka (2004), A study of possible ground-motion amplification at the Coyote Lake dam, California, Bull. Seism. Soc. Am., 94, 4, 1327-1342, doi: 10.1785/012003144l. Caserta, A., V. Ruggiero, P. Lanucara (2002), Numerical modelling of dynamical interaction between seismic radiation and near-surface geological structures: a parallel approach, Computers & Geosciences, 28, 1069–1077. Cochran, E.S., Y.-G. Li, and J. E. Vidale (2006), Anisotropy in the shallow crust observed around the San Andreas fault befor and after the 2004 M 6.0 Parkfield earthquake, Bull. Seismol. Soc. Am., 96, 4B, S364-S375. Cochran, E.S., J. E. Vidale, Y.-G. Li (2003), Near-fault anisotropy following the Hector Mine earthquake, J. Geoph. Res., 108, 2436, doi: 10.1029/2002JB002352. Cultrera, G., A. Rovelli, G. Mele, R. Azzara, A. Caserta, F. Marra (2003), Azimuthdependent amplification of weak and strong ground motions within a fault zone (Nocera Umbra, central Italy), J. Geoph. Res., 108 (B3), 2156, doi: 10.1029/2002JB001929. Di Grazia, G., S. Falsaperla, H. Langer (2006), Volcanic tremor location during the 2004 Mount Etna lava effusion, Geophys. Res. Lett., 33, L04304, doi: 10.1029/2005GL025177. Fäh, D., F. Kind, D. Giardini (2001), A theoretical investigation on H/V ratios, Geophys. J. Int., 145, 535-549. Ferrucci, F., R. Rasà, G. Gaudiosi, R. Azzaro, and S. Imposa (1993), Mt. Etna: a model for the 1989 eruption, J. Volcanol. Geotherm. Res., 56, 35-56. Ferrara, F. (1818), Descrizione dell’Etna, con la Storia delle Eruzioni e il Catalogo dei Prodotti, pp. 256, Lorenzo Dato, Palermo. Ferrara, F. (1835), Sopra la eruzione dell’Etna segnata da Orosio nel 122 innanzi G.C., Atti Accad. Gioenia Sci. Nat., Catania I 10, 141-158. Field, E. H., and K. H. Jacob (1995), A comparison and test of various site response estimation techniques, including three that are not reference site dependent, Bull. Seism. Soc. Am., 85, 1127-1143. Gledhill, K.R. (1990), A shear-wave polarization study in the Wellington region New Zealand, Geophys. Res. Lett., 17, 9, 1319-1322 Igel, H., G. Jahnke, and Y. Ben-Zion (2002), Numerical simulation of fault zone trapped waves: Accuracy and 3-D effects, Pure Appl. Geophys., 159, 2067-2083. Irikura, K., T. Kawanaka (1980), Characteristics of microtremors on ground with discontinuous underground structure, Bull. Disas. Prev. Inst. Kyoto Univ., 30-3, 81- 96. Jahnke, J., H. Igel, and Y. Ben-Zion (2002), 3D calculations of fault zone guided waves in various irregular structures, Geophys. J. Int., 151, 416-426. Jurkevics, A. (1988), Polarization analysis of three component array data, Bull. Seism. Soc. Am., 78, 1725-1743. La Rocca, M., D. Galluzzo, G. Saccorotti, S. Tinti, G. B. Cimini, E. Del Pezzo (2004), Seismic signals associated with landslides and with a tsunami at Stromboli volcano, Italy, Bull. Seism. Soc. Am., 94 (5), 1850-1867. Lermo, J., F. Chavez-Garcia (1993), Site effect evaluation using spectral ratios with only one station, Bull. Seism. Soc. Am., 83, 1574-1594. Lewis, M. A., Z. Peng, Y. Ben-Zion, F. L. Vernon (2005),. Shallow seismic trapping structure in the San Jacinto fault zone near Anza, California, Geophys. J. Int., 162, 867-881. Li, Y. G., P. C. Leary, K. Aki, and P. Malin (1990), Seismic trapped modes in the Oroville and San Andreas fault zones, Science, 249, 763-765. Li, Y. G., K. Aki, D. Adams, and A. Hasemi (1994), Seismic guided waves in the fault zone of the Landers, California, earthquake of 1992, J. Geophys. Res., 99, 11705- 11722. Li, Y. G., and J. E. Vidale (1996), Low-velocity fault-zone guided waves: Numerical investigations of trapping efficiency, Bull. Seism. Soc. Am., 86, 371-378. Li, Y. G., J. E. Vidale, K. Aki, and F. Xu (2000), Depth-dependent structure of the Landers fault zone using fault zone trapped waves generated by aftershocks, J. Geophys. Res., 105, 6237–6254. Liu, Y., T.-L Teng, Y. Ben-Zion (2005), Near-surface seismic anisotropy, attenuation and dispersion in the aftershock region of the 1999 Chi-Chi earthquake, Geophys. J. Int., 160, 695-706. Liu, Y., H. Zhang, C. Thurber, and S. Roecker (2008), Shear wave anisotropy in the crust around the San Andreas fault near Parkfield: spatial and temporal analysis, Geophys.J. Int. 172, 3, 957-970. Lo Giudice, E., and R. Rasà (1992), Very shallow earthquakes and brittle deformation in active volcanic areas: the Etnean region as example, Tectonophysics, 202, 257-268. Lombardo, G., and R. Rigano (2006), Amplification of ground motion in fault and fracture zones: observations from the Tremestieri fault, Mt. Etna (Italy), J. Volcanol. Geotherm. Res.,153, 167-176. Martinelli, G. (1911), Notizie sui terremoti osservati in Italia durante l’anno 1908, App. Boll. Soc. Sism. It., 15. McGuire, W. J., and A. D. Pullen (1989), Location and orientation of eruptive fissures and feeder dykes at Mount Etna; influence of gravitational and regional tectonic stress regimes, J. Volcanol. Geotherm. Res., 38, 325-344. Michael, A. J., Y. Ben-Zion (1998), Inverting fault zone trapped waves with genetic algorithm, EOS, Trans. Am. Geophys. Un., 79, F584. Monaco, C., P. Tapponnier, L. Tortorici, P. Y. Gillot (1997), Late Quaternary slip rates on the Acireale-Piedimonte normal faults and tectonic origin of Mt. Etna (Sicily), Earth Planet. Sci. Lett., 147, 125-139. Monaco, C., S. Catalano, G. De Guidi, S. Gresta, H. Langer, and L. Tortorici (2000), The geological map of the urban area of Catania, Eastern Sicily: morphotectonic and seismotectonic implications, Mem. Soc. Geol. It., 55, 425-438. Peng, Z., and Y. Ben-Zion (2004), Systematic analysis of crustal anisotropy along the Karadere-Düzce branch of the North Anatolian fault, Geophys. J. Int., 159, 253-274, doi: 10.1111/j.1365-246X.2004.02379.x. Peng, Z., Y. Ben-Zion, A. J. Michael, and L. Zhu (2002), Quantitative analysis of seismic trapped waves in the rupture zone of the Landers, 1992, California earthquake: evidence for a shallow trapping structure, EOS, Trans. Am. geophys. Un., 83. Peng, Z., Y. Ben-Zion, L. Zhu, and A. J. Michael (2003), Inference of a shallow fault zone layer in the rupture zone of the 1992 Landers, California earthquake fro locations of events generating trapped waves and traveltime analysis. Geophys. J. Int., 155, 1021– 1041. Rasà, R., R. Azzaro, O. Leonardi (1996), Aseismic creep on faults and flank instability at Mt. Etna volcano, Sicily, in: Volcano Instability on the Earth and Other Planets, Geological Society Special Publication, 110, edited by W. C. McGuire, A. P. Jones, and J. Neuberg, pp. 179-192. Rovelli, A., A. Caserta, F. Marra, and V. Ruggiero (2002), Can seismic waves be trapped inside an inactive fault zone? The case study of Nocera Umbra, central Italy, Bull. Seismol. Soc. Am., 92, 2217-2232. Sherbaum F., K. -G. Hinzen, R. Pelzing, M. Ohrnberger, S. K. Reamer, A. Sachse, R. Streich (2000), Analysis of ambient vibrations in the Lower Rhine Embayment to study local site effects, Eos Trans. AGU, Fall Meet. Suppl. 2000. Spudich, P., M. Hellweg, H. K. Lee (1996), Directional topographic site response at Tarzana observed in aftershocks of the 1994 Northridge, California, earthquake: implications for mainshock motions, Bull. Seism. Soc. Am., 86, S193-S208. Tucker, D. E., and J. L. King (1984), Dependence of sediment filled valley response on input amplitude and valley properties, Bull. Seism. Soc. Am., 74, 153-165.en
dc.description.obiettivoSpecifico4.1. Metodologie sismologiche per l'ingegneria sismicaen
dc.description.journalTypeJCR Journalen
dc.description.fulltextopenen
dc.contributor.authorRigano, S.en
dc.contributor.authorCara, F.en
dc.contributor.authorLombardo, G.en
dc.contributor.authorRovelli, A.en
dc.contributor.departmentDipartimento di Scienze Geologiche, Università di Catania, Catania, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentDipartimento di Scienze Geologiche, Università di Catania, Catania, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptUniversità di Catania-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptDipartimento di Scienze Geologiche, Università di Catania,-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.orcid0000-0002-1702-563X-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
2007JB005574-pip.pdfMain article4.54 MBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations

27
checked on Feb 10, 2021

Page view(s) 50

182
checked on Apr 20, 2024

Download(s) 5

1,100
checked on Apr 20, 2024

Google ScholarTM

Check

Altmetric