Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/4084
DC FieldValueLanguage
dc.contributor.authorallMuscari, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallde Zafra, R. L.; Department of Physics and Astronomy, and Institute for Terrestrial and Planetary Atmospheres, State University of New York, Stony Brook, New York, USAen
dc.date.accessioned2008-09-26T14:04:18Zen
dc.date.available2008-09-26T14:04:18Zen
dc.date.issued2008-09-20en
dc.identifier.urihttp://hdl.handle.net/2122/4084en
dc.descriptionReply to comment by Rolf Müller and Simone Tilmes on "Middle atmospheric O3, CO, N2O, HNO3, and temperature profiles during the warm Arctic winter 2001–2002"en
dc.description.abstract[1] Muscari et al. [2007] (hereafter referred to as M07) analyzed Arctic winter stratospheric conditions for 2001–2002 by means of ground-based measurements of stratospheric trace gases and temperature from Thule Air Base, Greenland (76.5°N, 68.7°W). The paper characterized stratospheric air masses observed over Thule from 20 January to 5 March 2002. Topics that were discussed included: the passage of both the polar vortex and the Aleutian high over Thule, with significant changes in ozone mixing ratio and temperature values; variations of measured O3 total column; vertical descent of air masses observed by means of CO measurements; observations of "ozone pockets" [Manney et al., 1995]; the correlation between illumination fraction and ozone mixing ratio at 900 K, indicating the relative significance of dynamics and photochemistry on ozone concentration at this altitude; the complete absence of polar stratospheric clouds, as concurrently monitored with a lidar system at Thule; and a qualitative (not quantitative) estimation of local ozone deficiency by means of N2O/O3 correlations. Müller and Tilmes [2008] (hereafter referred to as MT08) question the significant ozone deficiencies reported by M07 inside the vortex, which, as also pointed out by M07, are difficult to explain by heterogeneous chemistry during the warm winter 2001–2002. Nonetheless, M07 did speculate that heterogeneous activation of halogen compounds during mid-December and early January could have been the origin of the substantial ozone deficiency observed at the end of January/beginning of February in the small portion of the vortex core sampled by the Ground-Based Millimeter-Wave Spectrometer (GBMS). MT08 question this claim, as it "cannot be reconciled with the current understanding of halogen driven chemical ozone destruction in the Arctic." They suggest flaws in the N2O selection criteria used by M07 in order to identify intravortex N2O/O3 correlations, arising from their contention that GBMS measurements of N2O do not have the necessary spatial resolution needed for the task. MT08 favor instead the use of Potential Vorticity (PV) fields from European Centre Medium-Range Weather Forecasts (ECMWF) analyses. [2] As a result of the criticism of MT08, we have looked at N2O/O3 correlations from independent measurements carried out by the Odin Sub-Millimeter Radiometer (Odin/SMR) [Murtagh et al., 2002] and have also reprocessed the GBMS O3 measurements using a different deconvolution technique. The GBMS O3 reanalysis furnishes a significantly smaller qualitative estimate of local ozone loss (here and in the following we use "ozone loss" specifically to indicate an ozone deficiency due to heterogeneous activation of halogen compounds) and is consistent with the Odin/SMR data (section 2). This has resulted in a corrected and enriched version of Figure 9a of M07 (see Figure 2 in section 2). Although we value the comments of MT08 which prompted us to reanalyze GBMS ozone data, correcting and improving Figure 9 of M07 and the related discussion, we do reject some of the comments of MT08 concerning the N2O selection criteria used by M07, and reiterate the choice of GBMS N2O measurements rather than ECMWF PV values to separate air masses located inside, outside, or at the edge of the polar vortex (section 3). Furthermore, we stress that the use of N2O/O3 correlation curves to determine ozone loss inside the vortex, in particular near its edge (a region often called "the outer vortex"), can indeed cause an overestimation of local ozone loss near the vortex edge region and possibly also an overestimation of the vortex averaged loss (section 4).en
dc.language.isoEnglishen
dc.publisher.nameAGUen
dc.relation.ispartofJournal of Geophysical Researchen
dc.relation.ispartofseries/ 113 (2008)en
dc.subjectremote sensingen
dc.subjectpolar stratosphereen
dc.titleReply to comment by Rolf Müller and Simone Tilmes on ‘‘Middle atmospheric O3, CO, N2O, HNO3, and temperature profiles during the warm Arctic winter 2001–2002’’en
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberD18304en
dc.subject.INGV01. Atmosphere::01.01. Atmosphere::01.01.99. General or miscellaneousen
dc.identifier.doi10.1029/2008JD010292en
dc.relation.referencesChan, K. R., S. W. Bowen, T. P. Bui, S. G. Scott, and J. Dean-Day (1990), Temperature and wind measurements and model atmospheres of the 1989 Airborne Arctic Stratospheric Expedition, Geophys. Res. Lett., 17(4), 342–344, doi:10.1029/GL017i004p00341. Cheng, D., R. L. de Zafra, and C. Trimble (1996), Millimeter wave spectroscopic measurements over the South Pole: 2. An 11-month cycle of stratospheric ozone observations during 1993– 1994, J. Geophys. Res., 101(D3), 6781– 6793, doi:10.1029/95JD03652. Considine, D. B., S. R. Kawa, M. R. Schoeberl, and A. R. Douglass (2003), N2O and NOy observations in the 1999/2000 Arctic polar vortex: Implications for transport processes in a CTM, J. Geophys. Res., 108(D5), 4170, doi:10.1029/2002JD002525. Fahey, D. W., S. Solomon, S. R. Kawa, M. Loewenstein, J. R. Podolske, S. E. Strahan, and K. R. Chan (1990), A diagnostic for denitrification in the winter polar stratosphere, Nature, 345, 698 – 702, doi:10.1038/ 345698a0. Greenblatt, J. B., et al. (2002), Defining the polar vortex edge from an N2O:potential temperature correlation, J. Geophys. Res., 107(D20), 8268, doi:10.1029/2001JD000575. Harvey, V. L., M. H. Hitchman, R. B. Pierce, and T. D. Fairlie (1999), Tropical aerosol in the Aleutian High, J. Geophys. Res., 104(D6), 6281– 6290, doi:10.1029/1998JD200094. Hegglin, M. I., and T. G. Shepherd (2007), O3–N2O correlations from the Atmospheric Chemistry Experiment: Revisiting a diagnostic of transport and chemistry in the stratosphere, J. Geophys. Res., 112, D19301, doi:10.1029/2006JD008281. Loewenstein, M., J. R. Podolske, K. R. Chan, and S. E. Strahan (1990), N2O as a dynamical tracer in the Arctic vortex, Geophys. Res. Lett., 17(4), 477–480, doi:10.1029/GL017i004p00477. Manney, G. L., L. Froidevaux, J. W. Waters, R. W. Zurek, J. C. Gille, J. B. Kumer, J. L. Mergenthaler, A. E. Roche, A. O’Neill, and R. Swinbank (1995), Formation of low-ozone pockets in the middle stratospheric anticyclone during winter, J. Geophys. Res., 100(D7), 13,939 – 13,950, doi:10.1029/95JD00372. Manney, G. L., M. L. Santee, L. Froidevaux, K. Hoppel, N. J. Livesey, and J. W. Waters (2006), EOS MLS observations of ozone loss in the 2004– 2005 Arctic winter, Geophys. Res. Lett., 33, L04802, doi:10.1029/ 2005GL024494. Michelsen, H. A., G. L. Manney, M. R. Gunson, and R. Zander (1998), Correlations of stratospheric abundances of NOy, O3, N2O, and CH4 derived from ATMOS measurements, J. Geophys. Res., 103(D21), 28,347– 28,359, doi:10.1029/98JD02850. Mu¨ ller, R., and S. Tilmes (2008), Comment on ‘‘Middle atmospheric O3, CO, N2O, HNO3, and temperature profiles during the warm Arctic winter 2001– 2002’’ by Giovanni Muscari et al., J. Geophys. Res., 113, D18303, doi:10.1029/2007JD009709. Mu¨ ller, R., S. Tilmes, P. Konopka, J.-U. Grooß, and H.-J. Jost (2005), Impact of mixing and chemical change on ozone-tracer relations in the polar vortex, Atmos. Chem. Phys., 5, 3139– 3151. Murtagh, D., et al. (2002), An overview of the Odin atmospheric mission, Can. J. Phys., 80(4), 309–319, doi:10.1139/p01-157. Muscari, G., A. G. di Sarra, R. L. de Zafra, F. Lucci, F. Baordo, F. Angelini, and G. Fiocco (2007), Middle atmospheric O3, CO, N2O, HNO3, and temperature profiles during the warm Arctic winter 2001– 2002, J. Geophys. Res., 112, D14304, doi:10.1029/2006JD007849. Riese, M., G. L. Manney, J. Oberheide, X. Tie, R. Spang, and V. Ku¨ll (2002), Stratospheric transport by planetary wave mixing as observed during CRISTA-2, J. Geophys. Res., 107(D23), 8179, doi:10.1029/ 2001JD000629. Tilmes, S., R. Mu¨ ller, J.-U. Grooß, and J. M. Russell III (2004), Ozone loss and chlorine activation in the Arctic winters 1991– 2003 derived with the tracer-tracer correlations, Atmos. Chem. Phys., 4, 2181– 2213. Tilmes, S., R. Mu¨ ller, J.-U. Grooß, H. Nakajima, and Y. Sasano (2006), Development of tracer relations and chemical ozone loss during the setup phase of the polar vortex, J. Geophys. Res., 111, D24S90, doi:10.1029/ 2005JD006726. Twomey, S. (1977), Introduction to the Mathematics of Inversion in Remote Sensing and Indirect Measurements, Dev. Geomath., vol. 3, Elsevier, New York. Twomey, S., B. Herman, and R. Rabinoff (1977), An extension of the Chahine method of inverting the radiative transfer equation, J. Atmos. Sci., 34, 1085 – 1090, doi:10.1175/1520-0469(1977)034<1085:AETTCM> 2.0.CO;2. Urban, J., et al. (2005a), Odin/SMR limb observations of stratospheric trace gases: Level 2 processing of ClO, N2O, O3, and HNO3, J. Geophys. Res., 110, D14307, doi:10.1029/2004JD005741. Urban, J., et al. (2005b), Odin/SMR limb observations of stratospheric trace gases: Validation of N2O, J. Geophys. Res., 110, D09301, doi:10.1029/ 2004JD005394.en
dc.description.obiettivoSpecifico1.8. Osservazioni di geofisica ambientaleen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorMuscari, G.en
dc.contributor.authorde Zafra, R. L.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentDepartment of Physics and Astronomy, and Institute for Terrestrial and Planetary Atmospheres, State University of New York, Stony Brook, New York, USAen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptDepartment of Physics and Astronomy, and Institute for Terrestrial and Planetary Atmospheres, State University of New York, Stony Brook, U.S.A.-
crisitem.author.orcid0000-0001-6326-2612-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent01. Atmosphere-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
2008JD010292.pdfmain article249.5 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

1
checked on Feb 10, 2021

Page view(s) 10

416
checked on Mar 27, 2024

Download(s)

35
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric