Earth-prints repository, logo   DSpace

About DSpace Software
|earth-prints home page | roma library | bologna library | catania library | milano library | napoli library | palermo library
Please use this identifier to cite or link to this item:

Authors: Puglisi, G.*
Bonforte, A.*
Ferretti, A.*
Guglielmino, F.*
Palano, M.*
Prati, C.*
Title: Dynamics of Mt. Etna before, during and after the July - August 2001 eruption inferred from GPS and DInSAR data
Title of journal: Journal of Geophysical Research
Series/Report no.: / 113 (2008)
Publisher: AGU
Issue Date: 20-Jun-2008
DOI: 10.1029/2006JB004811
Keywords: Ground deformation
Mt. Etna
Abstract: Ground deformation data from GPS and differential synthetic aperture radar interferometry (DInSAR) techniques are analyzed to study the July–August 2001 Mount Etna eruption as well as the dynamics preceding and following this event. Five GPS surveys were carried out on the entire Mount Etna network or on its southeastern part, from July 2000 to October 2001. Five ERS-2 ascending passes and three descending ones are used to form five interferograms spanning periods from a month to 1 year, before and encompassing the eruption. Numerical and analytical inversions of the GPS and DInSAR data were performed to obtain analytical models for preeruptive, syneruptive and posteruptive periods. The deformation sources obtained were from the Mogi model: (1) pressure sources located beneath the upper western flank of the volcano, inflating before the eruption onset and deflating afterward; (2) tensile dislocations to model the intrusion of a N-S dike in the central part of the volcano; and (3) two sliding and two normal dislocations to model the eastern and southern flank dynamics. This study confirms that the lower vents of the eruption were fed by a magma stored at depth ranging from 9 to 4 km below sea level, as proposed from petrochemical and geophysical researches. The rising of the magma through the shallow crust started months before the eruption onset but accelerated on the last day; this study suggests that in the volcanic pile the path of the rising magma was driven by the volcano topography. The eastern sliding plane and the interaction between dike intrusion and flank instability have been better defined with respect to previous studies. The sliding motion abruptly accelerated with the dike intrusion, and this continued after the end of the eruption. The acceleration was accompanied by the propagation of the strain field toward the eastern periphery of the volcano.
Appears in Collections:04.08.06. Volcano monitoring
Papers Published / Papers in press

Files in This Item:

File Description SizeFormatVisibility
2008 - Puglisi et al - [ETNA 2001_ERUPTION] - JGR.pdfPubblication1.12 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Share this record




Stumble it!



Valid XHTML 1.0! ICT Support, development & maintenance are provided by CINECA. Powered on DSpace Software. CINECA