Earth-prints repository, logo   DSpace

About DSpace Software
|earth-prints home page | roma library | bologna library | catania library | milano library | napoli library | palermo library
Please use this identifier to cite or link to this item:

Authors: Pisani, A. R.*
Piersanti, A.*
Melini, D.*
Piatanesi, A.*
Soldati, G.*
Title: Effects of transient water mass redistribution associated with a tsunami wave on Earth’s pole path
Issue Date: Oct-2007
Series/Report no.: 5/50 (2007)
Keywords: Earth rotation
pole path variation
tsunami wave
Sumatra earthquake
Abstract: We have quantified the effects of a water mass redistribution associated with the propagation of a tsunami wave on the Earth’s pole path and on the Length-Of-Day (LOD) and applied our modeling results to the tsunami following the 2004 giant Sumatra earthquake. We compared the result of our simulations on the instantaneous rotational axis variations with the preliminary instrumental evidence on the pole path perturbation (which has not been confirmed) registered just after the occurrence of the earthquake. The detected perturbation in the pole path showed a step-like discontinuity that cannot be attributed to the effect of a seismic dislocation. Our results show that the tsunami induced instantaneous rotational pole perturbation is indeed characterized by a step-like discontinuity compatible with the observations but its magnitude is almost one hundred times smaller than the detected one. The LOD variation induced by the water mass redistribution turns out to be not significant because the total effect is smaller than current measurements uncertainties.
Appears in Collections:04.03.02. Earth rotation
Annals of Geophysics

Files in This Item:

File SizeFormatVisibility
05 Pisani.pdf2.81 MBAdobe PDFView/Open

This item is licensed under a Creative Commons License
Creative Commons

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Share this record




Stumble it!



Valid XHTML 1.0! ICT Support, development & maintenance are provided by CINECA. Powered on DSpace Software. CINECA