Earth-prints repository, logo   DSpace

About DSpace Software
|earth-prints home page | roma library | bologna library | catania library | milano library | napoli library | palermo library
Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/406

Authors: Chiodini, G.*
Avino, R.*
Brombach, T.*
Caliro, S.*
Cardellini, C.*
De Vita, S.*
Frondini, F.*
Granieri, D.*
Marotta, E.*
Ventura, G.*
Title: Fumarolic and diffuse soil degassing west of Mount Epomeo, Ischia, Italy
Title of journal: Journal of volcanology and geothermal research
Series/Report no.: 133
Publisher: Elsevier Scientific Publishers
Issue Date: 2004
DOI: 10.1016/S0377-0273(03)00403-7
URL: www.elsevier.com/locate/jvolgeores
Keywords: Diffuse degassing
Ischia
Hydrothermal systems
Energy release
Abstract: Fumarolic fluid compositions and diffuse soil emissions of hydrothermal fluids of the Donna Rachele area (0.86 km2, western flank of Mt. Epomeo, Ischia Island) have been studied in order to develop a conceptual geochemical model of the hydrothermal system. The degassing area was mapped and the total release of hydrothermal gas and heat associated with the diffuse emission of hydrothermal fluids was estimated. A mesostructural study was carried out in order to investigate the relations between the brittle structures and the main pathways of the uprising vapor.The fumarolic compositions are typical of hydrothermal fluids and water (s99%) represents the major component. All gas species in the 2O^H2^CO^CH4^CO2^H2S system are close to equilibrium concentrations at temperatures of V300‡C and at redox conditions slightly more oxidizing than expected. The compositions of the Donna Rachele fumarolic gas approach the pure liquid equilibrium composition. This indicates a high fraction of separated vapor and suggests the presence of a highly energetic hydrothermal system at depth. The pure liquid equilibrium compositions of the Donna Rachele fumaroles, along with the historical records of shallow seismicity, the ‘explosion’ of a well in 1995, the occurrence of intense acoustic phenomena and of shallow wells discharging vapor indicate that the internal pressure of the hydrothermal system is occasionally larger than the hydrostatic pressure. To quantify the energy dissipated in the Donna Rachele area by the emission of fumarolic fluids, the hydrothermal diffuse degassing was studied by means of 336 soil CO2 flux measurements. The highest CO2 fluxes were measured in hydrothermally altered areas along the faults that border Mt. Epomeo. Structural data indicate that the vapor rises up along NW^SE striking normal faults related to gravity-induced stresses and affecting highly fractured lavas. The older faults, which are related to the Mt. Epomeo resurgence, act as a permeability barrier and bound the Donna Rachele diffuse degassing structure. The total hydrothermal CO2 output was estimated to be V9 t d31. Assuming that the H2O/CO2 ratio of the fluids that feed the diffuse degassing is the same as that of fumarolic effluents, the calculated heat flux is V40 MW. This value, which represents an important energy release, is only a part of the total thermal energy release of Ischia, where other fumarolic areas occur. The results obtained at Ischia indicate the importance of thermal energy released by diffuse degassing structures in the energy balance of quiescent volcanoes. Values of the thermal energy release from the Ischia hydrothermal system are comparable with those estimated on other quiescent volcanoes.
Appears in Collections:Manuscripts
04.08.06. Volcano monitoring
Papers Published / Papers in press
Papers Published / Papers in press

Files in This Item:

File Description SizeFormatVisibility
Chiodini.pdf2.03 MBAdobe PDFView/Open
journal volcanology geothermal research.htmRedirect - journal volcanology geothermal research497 BHTMLView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Share this record
Del.icio.us

Citeulike

Connotea

Facebook

Stumble it!

reddit


 

Valid XHTML 1.0! ICT Support, development & maintenance are provided by CINECA. Powered on DSpace Software. CINECA