Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/4037
DC FieldValueLanguage
dc.contributor.authorallBottari, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallBottari, A.; Osservatorio Sismologico, University of Messina, Italyen
dc.contributor.authorallCarveni, P.; Dipartimento di Scienze Geologiche, University of Catania, Italyen
dc.contributor.authorallSaccà, C.; Osservatorio Sismologico, University of Messina, Italyen
dc.contributor.authorallSpigo, U.; Archaeological Superintendence of Catania, Italyen
dc.contributor.authorallTeramo, A.; Osservatorio Sismologico, University of Messina, Italyen
dc.date.accessioned2008-09-05T12:06:40Zen
dc.date.available2008-09-05T12:06:40Zen
dc.date.issued2008en
dc.identifier.urihttp://hdl.handle.net/2122/4037en
dc.description.abstractMost of the ancient town of Tindari (NE, Sicily) was settled on a plateau the most surficial layer of which was made of unconsolidated material. Ongoing excavations at the archaeological site at Tindari uncovered a large portion of the decumanus which suffered deformations preliminarily assigned to coseismic effects. An analysis of the local dynamic response through the simulation of strong seismic shaking to the bedrock and modelling of spectral ratios of the bedrock-soft soil was carried out to verify the susceptibility of superficial terrains of the promontory to coseismic deformations. To perform this simulation the finite element method (FEM) was used. Four accelerometric recordings of three earthquakes of medium-high magnitude, recorded on rocky sites, were chosen to simulate the seismic shaking, using a constitutive law for the materials composing the promontory layers both of linear-elastic type and of elastoplastic type. The analysis of the linear-elastic field allowed the definition of the frequencies for which the spectral ratios of the accelerations recorded the highest amplifications; in particular the frequency range 31.5–37.2 Hz can be combined with deformation of the paved floor of the decumanus. The analysis in the elastoplastic field highlighted the zones of promontory more susceptible to suffer plasticization process. The results show that the topmost layer of the decumanus is the most susceptible to suffer plasticization. Therefore, the performed analysis lends greater support to the hypothesis that the deformations were produced by seismic shaking.en
dc.language.isoEnglishen
dc.publisher.nameBlackwell Publishing Ltden
dc.relation.ispartofGeophysical Journal Internationalen
dc.relation.ispartofseries/ 174 (2008)en
dc.subjectFourier analysisen
dc.subjectElasticity and anelasticityen
dc.subjectEarthquake ground motionsen
dc.subjectSite effectsen
dc.subjectComputational seismologyen
dc.titleEvidence of seismic deformation of the paved floor of the decumanus at Tindari (NE, Sicily)en
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber213-222en
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneousen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.05. Historical seismologyen
dc.identifier.doi10.1111/j.1365-246X.2008.03772.xen
dc.relation.referencesAdam, J.P., 2003. L’Arte di costruire presso i Romani, materiali e tecniche, 7th edn, Longanesi & C., Milano, 369 p. Ambraseys,N.N., Smit, P., Berardi,D., Cotton, F.&Berge, C., 2000. Dissemination of European strong motion data, CD-ROM Collection, Brussels, European Commission, Directorate-General XII, Environmental and Climate Programme, ENV4-CT97-0397. Amore, C., Giuffrida, E. & Randazzo, G., 1995. Atlante delle spiagge italiane. Dinamica – tendenza evolutiva – opere umane. Foglio 253 “Castroreale”. Scala 1:100.000. S.EL.CA., Firenze. Barbano, M.S., et al., 1978. Elementi per una carta sismotettonica della Sicilia e della Calabria Meridionale, Mem. Soc. Geol. It., 19, 681–688. Bernab`o-Brea, L., 1964–1965. Due secoli di studi, scavi e restauri del teatro greco di Tindari, Rivista dell’Istituto Nazionale di Archeologia e Storia dell’Arte, 99–144. Bernab`o Brea, L., 1996. Note sul terremoto del 365 d.C. a Lipari e nella Sicilia nord-orientale in La Sicilia dei terremoti, lunga durata e dinamiche sociali, ed. G. Giarrizzo, Atti del Convegno di Studi, Universit`a di Catania, Facolt`a di Lettere e Filosofia, Catania 11–13, 1995, Giuseppe Maimone Ed. Bernab`o Brea, L., 2000. Restauri del teatro antico di Taormina, Quaderni di Archeologia, 1, 59–106. Borcherdt, R.D., 1970. Effects of local geology on ground motion near San Francisco Bay, BSSA, 60, 29–61. Boschi, E. et al., 1995. Resonance of subsurface sediments: an unforeseen complication for designers of Roman Columns, BSSA, 85, 320–324. Boschi, E., Ferrari, G., Gasperini, P., Guidoboni, E., Smriglio, G. & Valensise, G., 1995a. Catalogo dei forti terremoti in Italia dal 461 a.C. al 1980, Istituto Nazionale di Geofisica,SGAStoria Geofisica Ambiente, Bologna. Bottari, C., 2005. Ancient constructions as markers of tectonic deformation and of strong seismic motions, Pageoph, 162, 761–765. Bottari, C., Walsh, J.St.P. & Stiros, S.C., 2003. New archaeological evidence for earthquakes in the Calabro-Peloraitan Arc region,Workshop on Seismogenetic faulting and seismic activity in the Calabro-Peloraitan Arc region, Taormina, October 16–17. Catalano, S. & Cinque, A., 1995. Dati preliminari sull’evoluzione neotettonica dei Peloritani settentrionali (Sicilia nord-orientale) sulla base dei dati morfologici. Studi Geologici Camerti, 2, 113–123. Catalano, S. & Di Stefano, A., 1997. Sollevamenti e tettonogenesi pleistocenica lungo il margine tirrenico dei Monti Peloritani: integrazione dei dati geomorfologici, strutturali e biostratigrafici, Il Quaternario, 10, 337– 342. De Astis, G., Ventura, G. & Vilardo, G., 2003. Geodynamic significance of the Aeolian volcanism (Southern Tyrrhenian Sea, Italy) in light of structural, seismological and geochemical data, Tectonics, 22(4), 1040, doi:10.1029/2003TC001506. De Domenico, D., Giannino, F., Leucci, G., Nuzzo, L. & Bottari, C., 2006. Geophysical surveys in the archaeological site of Tindari (Sicily, Italy), J. Archaeol. Sci., 33, 961–970. Dinsmoor, W.B., 1975. The Architecture of Ancient Greece: An Account of Its Historic Development, 3rd edn, Batsford, New York. French, E.B., 1996. Evidence for an earthquake at Mycenae, in Archaeoseismology, pp. 51–54, eds S. Stiros & R.E. Jones, Athens, Fitch Laboratory Occasional Paper No. 7. Funiciello, R., Boschi, E., Di Bona, M., Malagnini L., Rovelli, A.&Salvi, S., 1992. Local amplification in the city of Rome inferred from observations of damage in monuments of imperial age: ground motion estimates based on subsurface geology data, ESG, International Symposium on the effects of Surface Geology on seismic Motion. Galadini, F. & Galli, P., 2004. The 346 AD earthquake (Central-Southern Italy): an archaeoseismological approach, Ann. Geophys., 47, 885–905. Galanopoulos, A., 1956. The seismic risk at Athens, Praktika Akadimias Athinion, 31, 461–472 (in Greek). Geotecnica Ingegneria Applicate, 1998. Indagini geognostiche relative al progetto per la realizzazione di un Centro Servizi a Tindari (Messina), 78. Ghisetti F., 1979. Relazioni tra strutture e fasi trascorrenti e distensive lungo i sistemi Messina-Fiumefreddo, Tindari-Letojanni e Alia-Malvagna (Sicilia nord-orientale): uno studio microtettonico, Geologica Romana, 18, 23–58. Giardina, N., 1882. L’antica Tindari, Siena. Guidoboni, E., Comastri, A. & Traina, G., 1994. Catalogue of ancient earthquakes in the Mediterranean area up to 10th century, ING, Roma, 504. Guidoboni, E., Muggia, A.&Valensise, G., 2000. Aims and methods in territorial archaeology: possible clues to a strong fourth centuryADearthquake in the Straits of Messina (southern Italy), in The Archaeology of Geological Catastrophes, Vol. 171, pp. 45–70, edsW.G. McGuire, D.R. Griffiths, P.L. Hancock & I.S. Stewart, Geological Society, Special Publications, London. Karcz, I. & Kafri, U., 1978. Evaluation of supposed archaeoseismic damage in Israel, J. Archaeol. Sci., 5, 237–253. Kilian, K., 1996. Earthquakes and archaeological context at 13th century bc Tiryns, in Archaeoseismology, pp. 63–68, eds S. Stiros & R.E. Jones, Athens: Fitch Laboratory Occasional Paper No. 7. Kuhlmeyer, R.L. & Lysmer, J., 1973. Finite element method accuracy for wave propagation problems, J. Soil Mech. Foundations Div., ASCE, 99(SM5), 421–427. Korres, M., 1996. Seismic damage to the monuments of The Athenian Acropolis, in Archaeoseismology, pp. 69–74, eds S. Stiros & R. Jones, British School at Athens, Fitch Laboratory Occasional Paper 7. Lanciani, R., 1918. Segni di terremoti negli edifizi di Roma antica, Bull. Archeologia Comunale Roma, pp. 1–30. Lentini, F. et al., 2000. Carta geologica della provincia di Messina. S.El.Ca., Firenze. Michaelidou-Nikolaou, I., 1985. Evidence for an unknown earthquake in Paphos, in ρακτ ικ ´α τo ´υ δευτ´ερoυ δι´εθνoυς Kυπριoλoγ ικoκυ συνεδρ´ιoυ, Nicosia, pp. 357–362. Neri, G., Barberi, G., Orecchio, B.&Mostaccio, A. 2003. Seismic strain and seismogenic stress regimes in the crust of the southern Tyrrhenian region, Earth Planet. Sc. Lett., 213, 97–112. Nikonov, A., 1988. On the methodology of archaeoseismic research into historical monuments in Engineering Geology of AncientWorks, Monuments and Historical Sites, Preservation and Protection, pp. 1315–1320, eds P. Marinos & G. Koukis, Balkema, Rotterdam. Nur, A. & Ron, H., 1996. And the walls came tubling down: Earthquake history in the Holyland, in Archaeoseismology, pp. 75–85, eds S. Stiros & R. Jones, British School at Athens, Fitch Laboratory Occasional Paper 7. Otter, J.R.H., Cassell, A.C.&Hobbs, R.E., 1966. Dynamic relaxation (Paper No. 6986), Proc. Instn. Civ. Engrs., 35, 633–656. Rapp, Jr. G., 1986. Assessing archaeological evidence for seismic catastrophes, Geoarchaeology 1, 365–379. Rockfield Software Limited, 2004. ELFEN V.3.7.1. S¸ afak, E., 2001. Local site effects and dynamic soil behaviour, Soil Dyn. Earthq. Eng., 21, 453–458. Sampson, A., 1996. Cases of earthquakes at Mycenaean and pre-Mycenaean Thebes, in Archaeoseismology, pp. 113–117, eds S. Stiros & R.E. Jones, Fitch Laboratory Occasional Paper No. 7, Athens. Savitzky, A., & Golay, M.J.E., 1964. Anal. Chem., 36, 1627–1639. Servizio Sismico Nazionale, Ente Nazionale per l’Energia Elettrica, 1998. Elaborazione delle principali registrazioni accelerometriche della sequenza sismica Umbro-Marchigiana del settembre-ottobre 1997 (CDROM collection). Shearer, P.M., 1999. Introduction to Seismology, Cambridge University Press, 260 p. Shebalin, N.V., 1974. Foci of the large earthquakes in USSR. Pubb. Inst. of Physics of the Earth, USSR Academy of Sciences, Moscow (in Russian). Stiros, S.C., 1995. Archaeological evidence of antiseismic constructions in antiquity, Annali di Geofisica, 38, 725–736. Stiros, S.C., 1996. Identification of earthquake from archaeological data: Methodology, Criteria and Limitations. in Archaeoseismology, pp. 129– 152, eds S. Stiros & R. Jones, British School at Athens, Fitch Laboratory Occasional Paper 7. Stiros, S.C., 2001. The AD 365 Crete earthquake and possible clustering during the fourth to sixth centuries in the Eastern Mediterranean: a review of historical and archaeological data, J. Struc. Geol., 23, 545–562. Wilson, R.J.A., 1990. Sicily Under the Roman Empire. The Archaeology of a Roman Province 36 BC–535 AD, Aris & Philips, Warminster, 464p.en
dc.description.obiettivoSpecifico3.10. Sismologia storica e archeosismologiaen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorBottari, C.en
dc.contributor.authorBottari, A.en
dc.contributor.authorCarveni, P.en
dc.contributor.authorSaccà, C.en
dc.contributor.authorSpigo, U.en
dc.contributor.authorTeramo, A.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentOsservatorio Sismologico, University of Messina, Italyen
dc.contributor.departmentDipartimento di Scienze Geologiche, University of Catania, Italyen
dc.contributor.departmentOsservatorio Sismologico, University of Messina, Italyen
dc.contributor.departmentArchaeological Superintendence of Catania, Italyen
dc.contributor.departmentOsservatorio Sismologico, University of Messina, Italyen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptOsservatorio Sismologico, Universita` di Messina, Messina, Italy-
crisitem.author.deptDipartimento di Scienze Geologiche, Universita` di Catania-
crisitem.author.deptOsservatorio Sismologico, University of Messina, Italy-
crisitem.author.deptArchaeological Superintendence of Catania, Italy-
crisitem.author.deptOsservatorio Sismologico, Università di Messina-
crisitem.author.orcid0000-0003-4371-6060-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
tindari.pdfmain article552.72 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

9
checked on Feb 10, 2021

Page view(s) 50

245
checked on Apr 17, 2024

Download(s)

32
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric