Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/4029
DC FieldValueLanguage
dc.contributor.authorallSussman, A. J.; Department of Geosciences, University of Arizona, Tucson, AZ 85721, USAen
dc.contributor.authorallButler, R. F.; Department of Geosciences, University of Arizona, Tucson, AZ 85721, USAen
dc.contributor.authorallDinarès-Turell, J.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallVergès, J.; Institut de Ciències de la Terra 'Jaume Almera', CSIC, 08028, Barcelona, Spainen
dc.date.accessioned2008-09-02T07:36:14Zen
dc.date.available2008-09-02T07:36:14Zen
dc.date.issued2004-02-15en
dc.identifier.urihttp://hdl.handle.net/2122/4029en
dc.description.abstractIn curved orogenic systems where thrusting and vertical-axis rotations have been documented, it is possible to determine whether the curvature is secondary or progressive based on the timing between the two motions. The South-Central Unit of the Southern Pyrenees provides an opportunity to investigate relationships between thrusting, folding, and vertical-axis rotation because of unusual preservation of Tertiary synorogenic sedimentary strata. Paleomagnetic samples were collected from 51 sites in the upper Eocene-lower Oligocene continental synorogenic strata of the Oliana anticline, a foreland fold along the eastern margin of the South-Central Unit. Site-mean characteristic remanent magnetization directions were determined from 17 sites through thermal demagnetization and principal component analysis. In addition, 72 samples were collected from 39 stratigraphic levels spanning the Upper Eocene marine marls and treated with thermal and alternating field demagnetization techniques. Of these, 53 samples yielded demagnetization trajectories that further constrained the rotation. Comparison of the observed mean paleomagnetic direction from the Oliana anticline with the expected direction indicates a counterclockwise rotation (R ± ΔR) of 20.3° ± 10.9°. Based on the stratigraphic horizons recording the rotation, the age of the rotation is younger than ~34 Ma (after deposition of Unit 3). Data covering the Upper Eocene-Lower Oligocene time interval indicate a similar magnitude of rotation, suggesting that late stage emplacement of thrust sheets hinterlandward of the Oliana anticline controlled the rotation, with rotation accommodated along regionally extensive evaporites. The well-constrained timing relationships between thrusting and rotation and the regional and local transport directions, suggest that the South-Central Unit is a progressive curve that formed through distributed shortening.en
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofEarth and Planetary Science Lettersen
dc.relation.ispartofseries3-4 / 218 (2004)en
dc.subjectPyreneesen
dc.subjectOliana anticlineen
dc.subjectsynorogenic strataen
dc.subjectpaleomagnetismen
dc.subjectsalientsen
dc.titleVertical-axis rotation of a foreland fold and implications for orogenic curvature: an example from the Southern Pyrenees, Spainen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber435-449en
dc.subject.INGV04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetismen
dc.subject.INGV04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamicsen
dc.subject.INGV04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonicsen
dc.identifier.doi10.1016/S0012-821X(03)00644-7en
dc.relation.references[1] D.L. Miser, Oklahoma structural salient of the Ouachita Mountains, Geol. Soc. Am. Bull. 43 (1932) 1-38. [2] E. Suess, The Face of the Earth, translated from Ferman by H.B.C. Sollas and H.J. Sollas, Clarendon, Oxford, 1909, 672 pp. [3] W.H. Hobbs, Mechanics of formation of arcuate mountain belts, J. Geol. 22 (1914) 72-90. [4] S.W. Carey, The orocline concept in geotectonics, Proc. R. Soc. Tasmania 89 (1955) 255-288. [5] D. Elliott, The motion of thrust sheets, J. Geophys. Res. 81 (1976) 949-963. [6] D.J. Sanderson, Models of strain variation in nappes and thrust sheets; a review, Tectonophysics 88 (1982) 201- 233. [7] S. Marshak, Kinematics of orocline and arc formation in thin-skinned orogens, Tectonics 7 (1988) 73-86. [8] M.S. Wilkerson, Di¡erential transport and continuity of thrust sheets, J. Struct. Geol. 14 (1992) 749-775. [9] H. Hindle, M. Burkhard, Strain, displacement and rotation associated with the formation of curvature on fold belts; the example of the Jura arc, J. Struct. Geol. 21 (1999) 1089-1101. [10] W. Lowrie, A.M. Hirt, Paleomagnetism in arcuate mountain belts, in: F.C. Wezel (Ed.), The Origin of Arcs, Developments in Geotectonics, Elsevier, Amsterdam, 1986, pp. 141-158. [11] R. Van der Voo, J.A. Stamatakos, J.M. Pares, Kinematic constraints on thrust-belt curvature from syndeformational magnetizations in the Lagos del Valle Syncline in the Cantabrian Arc, Spain, J. Geophys. Res. 102 (1997) 105- 120. [12] A.B. Weil, R. Van der Voo, B.A. van der Pluijm, J. Pares, The formation of an orocline by multiphase deformation; a paleomagnetic investigation of the Cantabria Asturias Arc (northern Spain), J. Struct. Geol. 22 (2000) 735-756. [13] A.B. Weil, R. Van der Voo, B.A. van der Pluijm, Oroclinal bending and evidence against the Pangea megashear; the Cantabria-Asturias Arc (northern Spain), Geology 29 (2001) 991-994. [14] R.F. Butler, D.R. Richards, T. Sempere, L.G. Marshall, Paleomagnetic determinations of vertical-axis tectonic rotations from Late Cretaceous and Paleocene strata of Bolivia, Geology 23 (1995) 799-802. [15] P. Roperch, M. Fornari, G. He¤rail, G.V. Parraguez, Tectonic rotations within the Bolivian Altiplano: Implications for the geodynamic evolution of the central Andes during the late Tertiary, J. Geophys. Res. 105 (2000) 795- 820. [16] K.L. Grubbs, R. Van der Voo, Structural deformation of the Idaho - Wyoming overthrust belt (U.S.A.), as determined by Triassic paleomagnetism, Tectonophysics 33 (1976) 321-336. [17] S.Y. Schwartz, R. Van der Voo, Paleomagnetic study of thrust sheet rotation during foreland impingement in the Wyoming - Idaho overthrust belt, J. Geophys. Res. 89 (1984) 10077-10086. [18] S. Eldredge, R. Van der Voo, Paleomagnetic study of thrust sheet rotations in the Helena and Wyoming salients of the northern Rocky Mountains, Geol. Soc. Am. Mem. 171 (1988) 319-332. [19] S.Y. Schwartz, R. Van der Voo, Paleomagnetic evaluation of the orocline hypothesis in the central and southern Appalachians, Geophys. Res. Lett. 10 (1983) 505-508. [20] D.V. Kent, Further paleomagnetic evidence for oroclinal rotation in the central folded Appalachians from the Bloomsburg and Mauch Chunk Formations, Tectonics 7 (1988) 749-759. [21] J. Stamatakos, A.M. Hirt, Paleomagnetic considerations of the development of the Pennsylvania salient in the central Appalachians, Tectonophysics 231 (1994) 237-255. [22] J. Stamatakos, A.M. Hirt, W. Lowrie, The age and timing of folding in the central Appalachians from paleomagnetic results, Geol. Soc. Am. Bull. 108 (1996) 815-829. [23] M.B. Gray, J. Stamatakos, New model for evolution of fold and thrust belt curvature based on integrated structural and paleomagnetic results from the Pennsylvania Salient, Geology 25 (1997) 12-15. [24] J. Vergés, J.A. Munoz, Thrust sequence in the southern central Pyrenees, Bull. Soc. Geol. France 6 (1990) 265- 271. [25] D.W. Burbank, C. Puigdefabregas, J.A. Muñoz, The chronology of the Eocene tectonic and stratigraphic development of the eastern Pyrenean foreland basin, northeast Spain, Geol. Soc. Am. Bull. 104 (1992) 1101-1120. [26] D.W. Burbank, J. Vergés, J.A. Muñoz, P. Bentham, Coeval hindward- and foreward-imbricating thrusting in the south-central Pyrenees, Spain: Timing and rates of shortening and deposition, Geol. Soc. Am. Bull. 104 (1992) 3-17. [27] D.W. Burbank, J. Vergés, Reconstruction of topography and related depositional systems during active thrusting, J. Geophys. Res. 99 (1994) 2021-20297. [28] A.J. Meigs, J. Vergés, D.W. Burbank, Ten-million-year history of a thrust sheet, Geol. Soc. Am. Bull. 108 (1996) 1608-1625. [29] A.J. Meigs, Sequential development of selected Pyrenean thrust faults, J. Struct. Geol. 19 (1997) 481-502. [30] G. Boillot, Comparison between the Galicia and Aquitaine margins, Tectonophysics 129 (1986) 243-255. [31] J.A. Muñoz, Evolution of a continental collision belt: ECORS-Pyrenees crustal balanced cross-section, in: K.R. McClay (Ed.), Thrust Tectonics, Chapman and Hall, London, 1992, pp. 235-246. [32] M. Segueret, Etude tectonique des nappes et séries décollé es de la partoed centrale du versant sud des Pyrenées, Publ. USTELA Geol. Struct. 2 (1972) 155. [33] A. Simo, Carbonate platform depositional sequences, Upper Cretaceous, south-central Pyrenees (Spain), Tectonophysics 129 (1986) 205-231. [34] E. Mutti, J. Rosell, G.P. Allen, F. Fonnesu, M. Sgavetti, The Eocene Bartonia tide dominated delta-shelf system in the Ager basin, Guidebook for the 6th European Regional Meeting, Lerida, Spain, 1985, pp. 579-600. [35] C. Puigdefàbregas, J.A. Munoz, M. Marzo, Thrust belt development in the eastern Pyrenees and related depositional sequences in the southern foreland basin, in: P.A. Allen, P. Homewood (Eds.), Foreland Basins, Blackwell, Oxford, 1986, pp. 229-246. [36] E. Caus, Aportaciones al conocimiento del Eoceno dell anticlinal de Oliana (Prov. Del Lerida), Acta Geol. Hisp. 8 (1973) 7-10. [37] A. Saez, Estratigrafia y sedimentologia de las formaciones lacustres del transito Eoceo-Oligoceo de NE de la cuenca del Ebro, Ph.D. Dissertation, University of Barcelona, Barcelona, 1972, 352 pp. [38] D.J. Anastasio, Structural evolution of the External Sierra, southern Pyrenees, Spain, in: S. Mitra, G.W. Fisher (Eds.), Structural Geology of Fold-and-Thrust Belts, Johns Hopkins University Press, Baltimore, MD, 1992, pp. 239-251. [39] P.J. Coney, J.A. Muñoz, K.R. McClay, C.A. Evenchick, Syntectonic burial and post-tectonic exhumation of the southern Pyrenees foreland fold-thrust belt, J. Geol. Soc. London 153 (1996) 9-16. [40] A.J. Meigs, D.W. Burbank, Growth of the South Pyrenean orogenic wedge, Tectonics 16 (1997) 239-258. [41] J. Vergés, Estudi tectonic del Vessant sud del Pirineu oriental i central: Evolucio cinematica en 3D, Ph.D. Dissertation, Universitat de Barcelona, Barcelona, 1993, 203 pp. [42] J. Vergés, D.W. Burbank, Eocene-Oligocene thrusting and basin configuration in the eastern and central Pyrenees (Spain), in: P.F. Friend, C.R. Dabrio (Eds.), Tertiary Basins of Spain: The Stratigraphic Record of Crustal Kinematics, Cambridge University Press, Cambridge, 1996, pp. 120-133. [43] A.J. Sussman, T.M. Curtin, Structural and stratigraphic controls on the development of joints within the Oliana Anticline, southern Pyrenees, Spain, Geol. Soc. Am. Ab. Prog. 34 (2002) 165. [44] A.J. Sussman, Thrust belt curvature: Structural and paleomagnetic analyses in the Catalunyan Pyrenees and Sevier orogen, unpublished Ph.D. Dissertation, The University of Arizona, 2003, 175 pp. [45] J.L. Kirschvink, The least-squares line and plane and the analysis of paleomagnetic data, Geophys. J. R. Astron. Soc. 62 (1980) 699-718. [46] R.A. Fisher, Dispersion on a sphere, Proc. R. Soc. London 217A (1953) 295-305. [47] P.L. McFadden, M.W. McElhinny, Classification of the reversal test in palaeomagnetism, Geophys. J. Int. 103 (1990) 725-729. [48] S.C. Cande, D.V. Kent, Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic, J. Geophys. Res. 100 (1995) 6093-6095. [49] G.S. Watson, R.J. Enkin, The fold test in paleomagnetism as a parameter estimation problem, Geophys. Res. Lett. 20 (1993) 2135-2137. [50] N.I. Fisher, T. Lewis, B.J. Embleton, Statistical Analysis of Spherical Data, Cambridge University Press, Cambridge, 1987, 329 pp. [51] L. Tauxe, Paleomagnetic Principles and Practice, Kluwer Academic, 1998. [52] J. Dinare's, Paleomagnetic study of the Southpyrenean Upper Thrust Sheets: tectonic implications, unpublished Ph.D. Dissertation, University of Barcelona, Barcelona, 1992, 461 pp. [53] E.M. Gomis, J. Parés, L. Cabrera, Nuevos datos magnetostratigrafi cos del transito Oligocene-Miocene en el sector SE de la Cuence del Ebro (provincias de Lleida, Zaragoza y Huesca, NE de España), Acta Geol. Hisp. 32 (1997) 185-199. [54] M.E. Beck, Paleomagnetic record of plate-margin tectonics processes along the western edge of North America, J. Geophys. Res. 85 (1980) 7115-7131. [55] H.H. Demarest, Error analysis of the determination of tectonic rotation from paleomagnetic data, J. Geophys. Res. 88 (1983) 4321-4328. [56] J. Dinarès, E. McClelland, P. Santanach, Contrasting rotations within thrust sheets and kinematics of thrust tectonics as derived from palaeomagnetic data: an example from the Southern Pyrenees, in: K.R. McClay (Ed.), Thrust Tectonics, Chapman and Hall, London, 1992, pp. 265-275. [57] E.L. Pueyo, H. Millan, A. Pocovi, Rotation velocity of a thrust; a paleomagnetic study in the External Sierras (southern Pyrenees), Sediment. Geol. 146 (2002) 191-208. [58] P. Keller, W. Lowrie, A.U. Gehring, Palaeomagnetic evidence for post-thrusting tectonic rotation in the Southeast Pyrenees, Spain, Tectonophysics 239 (1994) 29-42.en
dc.description.obiettivoSpecifico2.2. Laboratorio di paleomagnetismoen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorSussman, A. J.en
dc.contributor.authorButler, R. F.en
dc.contributor.authorDinarès-Turell, J.en
dc.contributor.authorVergès, J.en
dc.contributor.departmentDepartment of Geosciences, University of Arizona, Tucson, AZ 85721, USAen
dc.contributor.departmentDepartment of Geosciences, University of Arizona, Tucson, AZ 85721, USAen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentInstitut de Ciències de la Terra 'Jaume Almera', CSIC, 08028, Barcelona, Spainen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptDepartment of Geosciences, University of Arizona, Tucson, AZ 85721, USA-
crisitem.author.deptDepartment of Geosciences, University of Arizona, Tucson, AZ 85721, USA-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptInstitut de Ciències de la Terra 'Jaume Almera', CSIC, 08028, Barcelona, Spain-
crisitem.author.orcid0000-0002-5546-2291-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
EPSL_Sussman_2004.pdfmain article877.47 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

43
checked on Feb 10, 2021

Page view(s)

118
checked on Mar 27, 2024

Download(s)

34
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric