Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/3994
DC FieldValueLanguage
dc.contributor.authorallSagnotti, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallRochette, P.; CEREGE, University of Aix-Marseille 3, BP80 13545, Aix en Provence, Cedex 4, Franceen
dc.contributor.authorallJackson, M.; Institute for Rock Magnetism, University of Minnesota, Minneapolis, MN 55455, USAen
dc.contributor.authorallVadeboin, F.; CEREGE, University of Aix-Marseille 3, BP80 13545, Aix en Provence, Cedex 4, Franceen
dc.contributor.authorallDinarès-Turell, J.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallWinkler, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorall"Mag-Net" Science Team; various European Universities and Institutesen
dc.date.accessioned2008-07-23T13:25:01Zen
dc.date.available2008-07-23T13:25:01Zen
dc.date.issued2003-06-12en
dc.identifier.urihttp://hdl.handle.net/2122/3994en
dc.description.abstractInter-laboratory and absolute calibrations of rock magnetic parameters are fundamental for grounding a rock magnetic database and for semi-quantitative estimates about the magnetic mineral assemblage of a natural sample. Even a dimensionless ratio, such as anhysteretic susceptibility normalized by magnetic susceptibility (Ka/K) may be biased by improper calibration of one or both of the two instruments used to measure Ka and K. In addition, the intensity of the anhysteretic remanent magnetization (ARM) of a given sample depends on the experimental process by which the remanence is imparted. We report an inter-laboratory calibration of these two key parameters, using two sets of artificial reference samples: a paramagnetic rare earth salt, Gd2O3 and a commercial "pozzolanico" cement containing oxidized magnetite with grain size of less than 0.1 m according to hysteresis properties. Using Gd2O3 the 10 Kappabridges magnetic susceptibility meters (AGICO KLY-2 or KLY-3 models) tested prove to be cross-calibrated to within 1%. On the other hand, Kappabridges provide a low-field susceptibility value that is ca. 6% lower than the tabulated value for Gd2O3, while average high-field susceptibility values measured on a range of instruments are indistinguishable from the tabulated value. Therefore, we suggest that Kappabridge values should be multiplied by 1.06 to achieve absolute calibration. Bartington Instruments magnetic susceptibility meters with MS2B sensors produce values that are 2–13% lower than Kappabridge values, with a strong dependence on sample centering within the sensor. The Ka/K ratio of ca. 11, originally obtained on discrete cement samples with a 2G Enterprises superconducting rock magnetometer and a KLY-2, is consistent with reference parameters for magnetites of grain size <0.1 m. On the other hand, Ka values from a 2G Enterprises magnetometer and K values from a Bartington Instruments MS2C loop sensor for u-channel and discrete cement samples, will produce average Ka/K values that are unrealistically high if not properly corrected for the nominal volume detected by the sensors for these instruments. Inter-laboratory measurements of K and Ka for standard paleomagnetic plastic cubes filled with cement indicate remarkable differences in the intensity of the newly produced ARMs (with a standard deviation of ca. 21%), that are significantly larger than the differences observed from the calibration of the different magnetometers employed in each laboratory. Differences in the alternating field decay rate are likely the major source of these variations, but cannot account for all the observed variability. With such large variations in experimental conditions, classical interpretation of a "King plot" of Ka versus K would imply significant differences in the determination of grain size of magnetite particles on the same material.en
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofPhysics of the Earth and Planetary Interiorsen
dc.relation.ispartofseries1 / 138 (2003)en
dc.subjectRock magnetismen
dc.subjectMagnetic susceptibilityen
dc.subjectAnhysteretic remanent magnetizationen
dc.subjectCalibrationen
dc.subjectInstrumentationen
dc.subjectRelativeen
dc.titleInter-laboratory calibration of low-field magnetic and anhysteretic susceptibility measurementsen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber25-38en
dc.subject.INGV04. Solid Earth::04.05. Geomagnetism::04.05.07. Rock magnetismen
dc.subject.INGV04. Solid Earth::04.05. Geomagnetism::04.05.08. Instruments and techniquesen
dc.identifier.doi10.1016/S0031-9201(03)00063-3en
dc.relation.referencesBartington Instruments Ltd., 2002. Operation Manual for MS2 Magnetic Susceptibility System. OM408 Issue 27, Oxford, UK, 67 pp. Brachfeld, S., 1999. Separation of geomagnetic paleointensity and paleoclimate signals in sediments: examples from North America and Antarctica. Ph.D. thesis, University of Minnesota. Dunlop, D.J., 2002. Theory and application of the Day plot (Mrs/Ms versus Hcr /Hc). 1. Theoretical curves and tests using titanomagnetite data. J. Geophys. Res. 107 (B3), DOI: 10.1029/2001JB000487. Dunlop, D.J., Özdemir, Ö., 1997. Rock Magnetism: Fundamentals and Frontiers. Cambridge University Press, New York, 573 pp. Holtzberg, F., Huber, D.L., Lefever, R.A., Longo, J.M., McGuire, T.R., Methfessel, S., 1970. Crystallographic, magnetic and electrical properties of trivalent oxides with Mn2O3 structure. In: Landolt-Börnstein, Group III: Magnetic and Other Properties of Oxides and Related Compounds, vol. 4a. Springer, Berlin, pp. 94–98. Hunt, C.P., Moskowitz, B.M., Banerjee, S.K., 1995. Magnetic properties of rocks and minerals, rock physics and phase relations—a handbook of physical constant. AGU Ref. Shelf 3, 189–204. Jackson, M., 2000. Wherefore Gadolinium? Magnetism of the rare earths. IRM Q. 10 (3), 1–7. King, J.W., Banerjee, S.K., Marvin, J.A., Özdemir, Ö., 1982. A comparison of different magnetic methods for determining the relative grain size of magnetite in natural materials: some results from lake sediments. Earth Planet. Sci. Lett. 59, 404– 419. Snowball, I., Hunt, C., Moskowitz, B., 1994. Initial inter-laboratory calibration effort: a lesson in trial and error? IRM Q. 4 (1), 6–8. Tauxe, L., Wu, G., 1990. Normalized remanence in sediments of the western equatorial Pacific: relative paleointensity of the geomagnetic field? J. Geophys. Res. B 95, 12337–12350.en
dc.description.obiettivoSpecifico2.2. Laboratorio di paleomagnetismoen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorSagnotti, L.en
dc.contributor.authorRochette, P.en
dc.contributor.authorJackson, M.en
dc.contributor.authorVadeboin, F.en
dc.contributor.authorDinarès-Turell, J.en
dc.contributor.authorWinkler, A.en
dc.contributor.author"Mag-Net" Science Teamen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentCEREGE, University of Aix-Marseille 3, BP80 13545, Aix en Provence, Cedex 4, Franceen
dc.contributor.departmentInstitute for Rock Magnetism, University of Minnesota, Minneapolis, MN 55455, USAen
dc.contributor.departmentCEREGE, University of Aix-Marseille 3, BP80 13545, Aix en Provence, Cedex 4, Franceen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentvarious European Universities and Institutesen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptUniversité d’Aix Marseille 3, UMR CNRS 6635, CEREGE Europole de l’Arbois BP80 13545 Aix en Provence Cedex 4, France-
crisitem.author.deptNorther Arizona University-
crisitem.author.deptCEREGE, University of Aix-Marseille 3, BP80 13545, Aix en Provence, Cedex 4, France-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.dept0-
crisitem.author.orcid0000-0003-3944-201X-
crisitem.author.orcid0000-0002-5546-2291-
crisitem.author.orcid0000-0002-0653-0059-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
08062312204606199.pdf327.5 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

52
checked on Feb 10, 2021

Page view(s)

189
checked on Apr 17, 2024

Download(s)

34
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric