Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/3887
DC FieldValueLanguage
dc.contributor.authorallGong, Z.; Palaeomagnetic Laboratory “Fort Hoofddijk”, Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Budapestlaan 17, 3584 CD Utrecht, The Netherlandsen
dc.contributor.authorallDekkers, M. J.; Palaeomagnetic Laboratory “Fort Hoofddijk”, Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Budapestlaan 17, 3584 CD Utrecht, The Netherlandsen
dc.contributor.authorallDinarès-Turell, J.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallMullender, T. A. T.; Palaeomagnetic Laboratory “Fort Hoofddijk”, Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Budapestlaan 17, 3584 CD Utrecht, The Netherlandsen
dc.date.accessioned2008-06-10T13:18:19Zen
dc.date.available2008-06-10T13:18:19Zen
dc.date.issued2008en
dc.identifier.urihttp://hdl.handle.net/2122/3887en
dc.description.abstractWidespread Cretaceous remagnetization is documented in several Mesozoic basins in North Central Spain. Organyà Basin (South Central Pyrenean foreland) is atypical in the sense that the lower part of the rock sequence (Berriasian-Barremian limestones) is remagnetized while the upper portion (Aptian-Albian marls) is not (Dinarès-Turell and García-Senz, 2000). Here, this view is confirmed by the analysis of 41 new paleomagnetic sites over the entire basin, so that a 3D view is obtained. Thermoviscous resetting of the natural remanent magnetization can be ruled out, hence the remagnetization is chemical in origin. A positive breccia-test on remagnetized strata constrains the remagnetization age to older than the Paleocene-Eocene, when the backthrust system was active. The remagnetization is argued to have occurred early in the geological history of the Organyà Basin either in the elevated geothermal gradient regime during the syn-rift extension or at the earliest phase of the later compression. Burial is considered the most important cause combined with the lithological effect that limestones are more prone to express remagnetization than marls. The observed pressure solution in the remagnetized limestone is likely associated with the remagnetization, whereas it is unlikely that externally derived fluids have played an important role.en
dc.language.isoEnglishen
dc.publisher.nameInst. Geophys. AS CR, Pragueen
dc.relation.ispartofStudia Geophysica et Geodaeticaen
dc.relation.ispartofseries/ 52 (2008)en
dc.subjectnatural remanent magnetizationen
dc.subjectremagnetization mechanismen
dc.subjectCretaceousen
dc.subjectPyreneesen
dc.titleRemagnetization mechanism of lower Cretaceous rocks from the Organyà Basin (Pyrenees, Spain)en
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber187-210en
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transporten
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.10. Stratigraphyen
dc.subject.INGV04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetismen
dc.subject.INGV04. Solid Earth::04.05. Geomagnetism::04.05.07. Rock magnetismen
dc.relation.referencesBecker E., 1999. Orbitoliniden-Biostratigraphie der Unterkreide (Hauterive-Barrême) in den spanischen Pyrenäen (Profil Organyà, Prov. Lérida). Revue Paléobiol. Genève, 18, 359-489. Berástequi X., García-Senz J. and Losantos M., 1990. Tecto-sedimentary evolution of the Organyà extensional basin (central south Pyrenean unit, Spain) during the Lower Cretaceous. Bull. Soc. Géol. France, 8(VI), 251-264. Bernaus J.M., 2000. L'Urgonien du Bassin d’Organyà. Géologie Alpine, Mémoire HS 33, 138 pp. Bernaus J.M., Arnaud-Vanneau A. and Caus E., 1999. La sedimentación “Urgoniense” en la cuenca de Organyà (NE España). Libro homenaje a José Ramírez del Pozo. De Geol. Y Geofis. Españoles del Petróleo, AGGEP, 71-80. Bernaus J.M., Arnaud-Vanneau A. and Caus E., 2003. Carbonate platform sequence stratigraphy in a rapidly subsiding area: the Late Barremian-Early Aptian of the Organya basin, Spanish Pyrenees. Sediment. Geol., 159, 177-201. Bernaus J.M., Caus E. and Arnaud-Vanneau A., 2000. Aplicación de los análisis micropaleontológicos cuantittivos en estratigrafía secuential: El Cretácico inferior de la cuenca de Organyà (Pirineos, España). Rev. Soc. Geol. España, 13, 55-63. Blumstein A.M., Elmore R.D., Engel M.H., Elliot C. and Basu A., 2004. Paleomagnetic dating of burial diagenesis in Mississippian carbonates, Utah. J. Geophys. Res. B, 109, B04101, doi:04110.01029/02003JB002698. Brothers L.A., Engel M.H. and Elmore R.D., 1996. A laboratory investigation of the late diagenetic conversion of pyrite to magnetite by organically complexed ferric iron. Chem. Geol., 130, 1-14. Dekkers M.J., 1989. Magnetic properties of natural goethite - II. TRM behaviour during thermal and alternating field demagnetization and low-temperature treatment. Geophysical Journal, 97, 341-355. Dinarès-Turell J. and García-Senz J., 2000. Remagnetization of Lower Cretaceous limestones from the southern Pyrenees and relation to the Iberian plate geodynamic evolution. J. Geophys. Res. B, 105, 19405-19418. Elmore R.D., Dulin S., Engel M.H. and Parnell J., 2006. Remagnetization and fluid flow in the Old Red Sandstone along the Great Glen Fault, Scotland. J. Geochem. Explor., 89, 96-99. Elmore R.D., London D., Bagley D., Fruit D. and Gao G., 1993. Remagnetization by basinal fluids: testing the hypothesis in the Viola Limestone, southern Oklahoma. J. Geophys. Res. B, 98, 6237-6254. Enkin R.J., Osadetz K.G., Baker J. and Kisilevsky D., 2000. Orogenic remagnetizations in the Front Ranges and Inner Foothills of the southern Canadian Cordillera: Chemical harbinger and thermal handmaiden of Cordilleran deformation. Geol. Soc. Am. Bull., 112, 929-942. Evans M.A. and Elmore R.D., 2006. Fluid control of localized mineral domains in limestone pressure solution structures. J. Struct. Geol., 28, 284-301. Evans M.A., Lewchuk M.T. and Elmore R.D., 2003. Strain partitioning of deformation mechanisms in limestones: examining the relationship of strain and anisotropy of magnetic susceptibility (AMS). J. Struct. Geol., 25, 1525-1549. Galdeano A., Moreau M.G., Pozzi J.P., Berthou P.Y. and Malod J.A., 1989. New paleomagnetic results from Cretaceous sediments near Lisbon (Portugal) and implications for the rotation of Iberia. Earth Planet. Sci. Lett., 92, 95-106. García-Senz J., 2002. Cuencas extensivas del Cretacico Inferior en los Pireneos Centrales - formacion y subsecuente inversion. PhD Thesis, University of Barcelona, Spain, 310 pp. Gibbons W. and Moreno M.T., 2002. The Geology of Spain. The Geological Society, London, U.K., 649 pp. Gradstein F.M., Ogg J.G., Smith A.G., Agterberg F.P., Bleeker W., Cooper R.A., Davydov V., Gibbard P., Hinnov L.A., House M.R., Lourens L., Luterbacher H.P., McArthur J., Melchin M.J., Robb L.J., Shergold J., Villeneuve M., Wardlaw B.R., Ali J., Brinkhuis H., Hilgen F.J., Hooker J., Howarth R.J., Knoll A.H., Laskar J., Monechi S., Plumb K.A., Powell J., Raffi I., Röhl U., Sadler P., Sanfilippo A., Schmitz B., Shackleton N.J., Shields G.A., Strauss H., Van Dam J., van Kolfschoten T., Veizer J. and Wilson D., 2004. A Geologic Time Scale 2004. Cambridge University Press, Cambridge, U.K., 589 pp. Heslop D., McIntosh G. and Dekkers M.J., 2004. Using time- and temperature-dependent Preisach models to investigate the limitations of modelling isothermal remanent magnetization acquisition curves with cumulative log Gaussian functions. Geophys. J. Int., 157, 55-63. Juárez M.T., Lowrie W., Osete M.L. and Meléndez G., 1998. Evidence of widespread Cretaceous remagnetisation in the Iberian Range and its relation with the rotation of Iberia. Earth Planet. Sci. Lett., 160, 729-743. Katz B., Elmore R.D., Cognoini M., Engel M.H. and Ferry S., 2000. Associations between burial diagenesis of smectite, chemical remagnetization, and magnetite authigenesis in the Vocontian trough, SE France. J. Geophys. Res. B, 105, 851-868. Katz B., Elmore R.D., Cogoini M. and Ferry S., 1998. Widespread chemical remagnetization: Orogenic fluids or burial diagenesis of clays? Geology, 26, 603-606. Kirschvink J.L., 1980. The least-squares line and plane and the analysis of palaeomagnetic data. Geophys. J. Roy. Astr. Soc., 62, 699-718. Kruiver P.P., Dekkers M.J. and Heslop D., 2001. Quantification of magnetic coercivity components by the analysis of acquisition curves of isothermal remanent magnetisation. Earth Planet. Sci. Lett., 189, 269-276. Kruiver P.P., Langereis C.G., Dekkers M.J. and Krijgsman W., 2003. Rock-magnetic properties of multicomponent natural remanent magnetization in alluvial red beds (NE Spain). Geophys. J. Int., 153, 317-332. Kruiver P.P. and Passier H.F., 2001. Coercivity analysis of magnetic phases in sapropel S1 related to variations in redox conditions, including an investigation of the S-ratio. Geochem. Geophys. Geosyst., 2, doi:2001GC000181. Langmuir D., 1971. Particle size effect of the reaction goethite = hematite + water. Am. J. Sci., 271, 147-156. Machel H.G. and Cavell P.A., 1999. Low-flux, tectonically-induced squeegee fluid flow (“hot flash”) into the Rocky Mountain Foreland Basin. Bull. Can. Pet. Geol., 47, 510-533. Márton E., Abranches M.C. and Pais J., 2004. Iberia in the Cretaceous: new paleomagnetic results from Portugal. J. Geodyn., 38, 209-221. McCabe C. and Elmore R.D., 1989. The occurrence and origin of Late Paleozoic remagnetization in the sedimentary rocks of North America. Rev. Geophys., 27, 471-494. Moreau M.G., Ader M. and Enkin R.J., 2005. The magnetization of clay-rich rocks in sedimentary basins: low-temperature experimental formation of magnetic carriers in natural samples. Earth Planet. Sci. Lett., 230, 193-210. Moreau M.G., Berthou J.Y. and Malod J.-A., 1997. New paleomagnetic Mesozoic data from the Algarve (Portugal): fast rotation of Iberia between the Hauterivian and the Aptian. Earth Planet. Sci. Lett., 146, 689-701. Moreau M.G., Canerot J. and Malod J.A., 1992. Paleomagnetic study of Mesozoic sediments from the Iberian Chain (Spain). Suggestions for Barremian remagnetization and implications for the rotation of Iberia. Bull. Soc. Geol. Fr., 163, 393-402. Muñoz J.A., 1988. Estructura de las unidades surpirineaicas en la tranversal del corte ECORS. Reun. Extraord. ECORS - Pirineos. Soc. Geol. España - Soc. Géol. France. Guía de Campo. Nottvedt A., Gabrielsen R.H. and Steel R.J., 1995. Tectonostratigraphy and sedimentary architecture of rift basins, with reference to the northern North Sea. Marine and Petroluem Geology, 12, 881-901. Oliver J., 1986. Fluids expelled tectonically from orogenic belts: their role in hydrocarbon migration and other geologic phenomena. Geology, 14, 99-102. Passchier C.W. and Trouw R.A.J., 1996. Microtectonics. Springer, New York. Roberts A.P., Cui Y.-L. and Verosub K.L., 1995. Wasp-waisted hysteresis loops: mineral magnetic characteristics and discrimination of components in mixed magnetic systems. J. Geophys. Res. B, 100, 17,909-917,924. Shipunov S.V., Muraviev A.A. and Bazhenov M.L., 1998. A new conglomerate test in palaeomagnetism. Geophys. J. Int., 133, 721-725. Stamatakos J., Hirt A.M. and Lowrie W., 1996. The age and timing of folding in the central Appalachians from paleomagnetic results. Geol. Soc. Am. Bull., 108, 815-829. Suk D.-W., Peacor D.R. and Van der Voo R., 1990. Replacement of pyrite framboids by magnetite in limestone and implications for paleomagnetism. Nature, 345, 611-613. Tauxe L., Mullender T.A.T. and Pick T., 1996. Potbellies, wasp-waists, and superparamagnetism in magnetic hysteresis. J. Geophys. Res. B, 101, 571-583. Van Velzen A.J. and Zijderveld J.D.A., 1995. Effects of weathering on single-domain magnetite in Early Pliocene marine marls. Geophys. J. Int., 121, 267-278. Vera J.A., Salas R., Bitzer K. and Mas R., 2001. Iberia and Western Mediterranean; Aptian-Albian 121-98.8 Ma. In: G. Stampfli, G. Borel, W. Cavazza, J. Mosar and P.A. Ziegler (Eds), The Paleotectonic Atlas of the PeriTethyan Domain. Copernicus Publications, Kaltenburg-Lindau, Germany, ISBN: 3-9804862-6-5. Vergés J. and García-Senz J., 2001. Mesozoic evolution and Cainozoic inversion of the Pyrenean Rift. In: P.A. Ziegler, W. Cavazza, A.H.F. Robertson and Crasquin-Soleau (Eds), Peri-Tethys Memoir 6, Peri-Tethyan Rift/Wrench Basins and Passive Margins. Mémoires du Muséum National d'Histoire Naturelle, 186, 187-212. Villalaín J.J., Fernandez Gonzales G., Casas A.M. and Gil-Ilmaz A., 2003. Evidence of a Cretaceous remagnetization in the Cameros Basin (North Spain): implications for basin geometry. Tectonophysics, 377, 101-117. Watson G.S., 1956. Analysis of dispersion on a sphere. Mon. Not. Roy. Astron. Soc. Geophys. Supp., 7, 153-159. Woods S., Elmore R.D. and Engel M.H., 2002. Paleomagnetic dating of the smectite-to-illite conversion: testing the hypothesis in Jurassic sedimentary rocks, Skye, Scotland. J. Geophys. Res. B, 107, doi:10.1029/2000JB000053. Xu W., van der Voo R. and Peacor D.R., 1998. Electron microscopic and rock magnetic study of remagnetized Leadvillle carbonates, central Colorado. Tectonophysics, 296, 333-362. Zegers T.E., Dekkers M.J. and Bailly S., 2003. Late Carboniferous to Permian remagnetization of Devonian limestones in the Ardennes: Role of temperature, fluids, and deformation. J. Geophys. Res. B, 108, 2357.en
dc.description.obiettivoSpecifico2.2. Laboratorio di paleomagnetismoen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorGong, Z.en
dc.contributor.authorDekkers, M. J.en
dc.contributor.authorDinarès-Turell, J.en
dc.contributor.authorMullender, T. A. T.en
dc.contributor.departmentPalaeomagnetic Laboratory “Fort Hoofddijk”, Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Budapestlaan 17, 3584 CD Utrecht, The Netherlandsen
dc.contributor.departmentPalaeomagnetic Laboratory “Fort Hoofddijk”, Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Budapestlaan 17, 3584 CD Utrecht, The Netherlandsen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentPalaeomagnetic Laboratory “Fort Hoofddijk”, Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Budapestlaan 17, 3584 CD Utrecht, The Netherlandsen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptPalaeomagnetic Laboratory “Fort Hoofddijk”, Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Budapestlaan 17, 3584 CD Utrecht, The Netherlands-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptPalaeomagnetic Laboratory “Fort Hoofddijk”, Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Budapestlaan 17, 3584 CD Utrecht, The Netherlands-
crisitem.author.orcid0000-0002-4156-3841-
crisitem.author.orcid0000-0002-5546-2291-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Gong_08_Organy=.pdf842.47 kBAdobe PDF
Show simple item record

Page view(s) 50

162
checked on Apr 24, 2024

Download(s)

23
checked on Apr 24, 2024

Google ScholarTM

Check