Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/3873
DC FieldValueLanguage
dc.contributor.authorallTosi, P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallDe Rubeis, V.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallLoreto, V.; 'La Sapienza' University, Physics Department, and INFM, Center for Statistical Mechanics and Complexity, Roma, Italyen
dc.contributor.authorallPietronero, L.; 'La Sapienza' University, Physics Department, and INFM, Center for Statistical Mechanics and Complexity, Roma, Italyen
dc.date.accessioned2008-05-20T09:30:55Zen
dc.date.available2008-05-20T09:30:55Zen
dc.date.issued2008-06en
dc.identifier.urihttp://hdl.handle.net/2122/3873en
dc.description.abstractSeismicity is a complex process featuring non-trivial space–time correlations in which several forms of scale invariance have been identified. A frequently used method to detect scale-invariant features is the correlation integral, which leads to the definition of a correlation dimension separately in space and time. In this paper, we generalize this method with the definition of a space–time combined correlation integral. This approach allows us to analyse medium-strong seismicity as a point process, without any distinction among main, after or background shocks. The analyses performed on the catalogue of worldwide seismicity and the corresponding reshuffled version strongly suggest that earthquakes of medium-large magnitude are time clustered inside specific space–time regions. On the basis of this feature, we recognize a space–time domain statistically characterized by sequences' behaviour and a domain of temporal randomness. Then, focusing on the spatial distribution of hypocentres, we find another domain confined to short distances and characterized by a relatively high degree of spatial correlation. This spatial domain slowly increases with time: we interpret this as the ‘afterevent’ zone representing the set of all subsequent events located very near (about 30 km) to each reference earthquake and embedded on specific seismogenic structures such as faults planes.en
dc.language.isoEnglishen
dc.publisher.nameBlackwell Publishingen
dc.relation.ispartofGeophysical Journal Internationalen
dc.relation.ispartofseries3 / 173 (2008)en
dc.subjectearthquake clusteringen
dc.titleSpace–time correlation of earthquakesen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber932-941en
dc.identifier.URLhttp://www.blackwell-synergy.com/doi/abs/10.1111/j.1365-246X.2008.03770.xen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probabilityen
dc.subject.INGV05. General::05.01. Computational geophysics::05.01.04. Statistical analysisen
dc.identifier.doi10.1111/j.1365-246X.2008.03770.xen
dc.relation.referencesBak, P. & Tang C., 1989. Earthquakes as a self-organized critical phenomenon, J. geophys. Res., 94, 15 635–15 637. Ben-Mizrachi, A., Procaccia, I.&Grassberger, P., 1984. The characterization of experimental (noisy) strange attractors, Phys. Rev. A, 29, 975–977. Brodsky, E. E., Karakostas, V. & Kanamori, H., 2000. A new observation of dynamically triggered regional seismicity: earthquakes in Greece following the August, 1999 Izmit, Turkey earthquake, Geophys. Res. Lett. 27, 2741–2744. De Rubeis, V., Dimitriu, P., Papadimitriu, E. & Tosi, P., 1993. Recurrent patterns in the spatial behaviour of Italian seismicity revealed by the fractal approach, Geophys. Res. Lett., 20, 1911–1914. De Rubeis, V., Tosi, P. & Vinciguerra, S., 1997. Time clustering properties of seismicity in the Etna region between 1874 and 1913, Geophys. Res. Lett., 24, 2331–2334. Dimitriu, P.P., Scordilis, E.M.&Karacostas,V.G., 2000. Multifractal analysis of the Arnea, Greece seismicity with potential implications for earthquake prediction, Nat. Hazards, 21, 277–295. Gasperini, P. & Mulargia, F., 1989. A statistical analysis of seismicity in Italy: the clustering properties, Bull. seism. Soc. Am., 79, 973–988. Godano, C. & Caruso, V., 1995. Multifractal analysis of earthquake catalogues, Geophys. J. Int., 121, 385–392. Godano, C. & Pingue, F., 2005. Multiscaling in earthquakes diffusion, Geophys. Res. Lett., 32, L18302. Godano, C., Tosi, P., De Rubeis, V. & Augliera, P., 1999. Scaling properties of the spatio-temporal distribution of earthquakes: a multifractal approach applied to a Californian catalogue, Geophys. J. Int., 136, 99–108. Grassberger, P. & Procaccia, I., 1983. Measuring the strangeness of strange attractors. Physica D, 9, 189–208. Helmstetter, A., Ouillon, G. & Sornette, D., 2003. Are aftershocks of large Californian earthquakes diffusing? J. geophys. Res., 108, 2483–2506. Hill, D.P. et al., 1993. Seismicity remotely triggered by the magnitude 7.3 Landers, California, earthquake, Science, 260, 1617–1623. Hirabayashi, T., Ito, K. & Yoshii, T., 1992. Multifractal analysis of Earthquakes, Pure appl. Geophys., 138, 591–610. Hirata, T. & Imoto, M., 1991. Multi-fractal analysis of spatial distribution of microearthquakes in the Kanto Region, Geophys. J. Int., 107, 155– 162. Hohenberg, P.C. & Halperin, B. I., 1977. Theory of dynamic critical phenomena, Rev. Mod. Phys., 49, 435–479. Huc, M. & Main, I.G., 2003. Anomalous stress diffusion in earthquake triggering: correlation length, time dependence, and directionality, J. geophys. Res., 108, 2324–2335. Husen, S., Wiemer, S. & Smith, R.B., 2004. Remotely triggered seismicity in the Yellowstone National Park region by the 2002 Mw 7.9 Denali Fault earthquake, Alaska, Bull. seism. Soc. Am., 94(6B), 317–331. Kagan, Y. Y. & Knopoff, L., 1980. Spatial distribution of earthquakes: the twopoint correlation function, Geophys. J. R. astr. Soc., 62, 303–320. Kantz, H.&Schreiber, T., 1997. Nonlinear Time Series Analysis, Cambridge University Press, Cambridge. King, G.C.P., Stein, R.S. & Lin, J., 1994. Static stress changes and the triggering of earthquakes, Bull. seism. Soc. Am., 84, 935–953. Lomnitz, C., 1996. Search of a worldwide catalog for earthquakes triggered at intermediate distances, Bull. seism. Soc. Am., 86, 293–298. Marsan, D. & Bean, C., 2003. Seismicity response to stress perturbations, analysed for a world-wide catalogue, Geophys. J. Int., 154, 179–195. Marsan, D., Bean, C.J., Steacy, S. & McCloskey, J., 1999. Spatio-temporal analysis of stress diffusion in a mined-induced seismicity system, Geophys. Res. Lett., 26, 3697–3700. Marsan, D., Bean, C.J., Steacy, S. & McCloskey, J., 2000. Observation of diffusion processes in earthquake populations and implications for the predictability of seismicity systems, J. geophys. Res., 105, 28 081–28 094. Marzocchi,W., Selva, J., Piersanti, A. & Boschi, E., 2003. On the long-term interaction among earthquakes: some insight from a model simulation, J. geophys. Res., 108, 2538–2550. McKernon, C. & Main, I.G., 2005. Regional variations in the diffusion of triggered seismicity, J. geophys. Res., 110, B05S05. Melini, D., Casarotti, E., Piersanti, A. & Boschi, E., 2002. New insights on long distance fault interaction, Earth planet. Sci. Lett., 204, 363–372. Ogata, Y., 1988. Statistical models for earthquake occurrence and residual analysis for point processes, J. Am. Stat. Assoc., 83, 9–27. Reasenberg, P.A., 1999. Foreshock occurrence before large earthquakes, J. geophys. Res., 104, 4755–4768. Smalley, R.F. Jr., Chatelain, J.L., Turcotte, D.L.&Pr´evot, R., 1987. A fractal approach to the clustering of earthquakes: applications to the seismicity of the New Hebrides, Bull. seism. Soc. Am., 77, 1368–1381. Stein, R. S., 1999. The role of stress transfer in earthquake occurrence, Nature, 402, 605–609. Stein, R. S., King, G.C.P. & Lin, J., 1994. Stress triggering of the 1994 M = 6.7 Northridge, California, earthquake by its predecessors, Science, 265, 1432–1435. Tajima, F.&Kanamori, H., 1985. Global survey of aftershock area expansion patterns, Phys. Earth planet. Inter., 40, 77–134. Tosi, P., 1998. Seismogenic structure behavior revealed by spatial clustering of seismicity in the Umbria-Marche region (Central Italy), Annali di Geofisica, 41, 215–224. Tosi P.,De RubeisV., Loreto,V.&Pietronero, L., 2004. Space-time combined correlation integral and earthquake interactions, Ann. Geophys., 47, 1849– 1854. Utsu, T., Ogata, Y., & Matsu’ura, S., 1995. The centenary of the Omori formula for a decay law of aftershock activity, J. Phys. Earth, 43, 1–33. Ziv, A., 2006. What controls the spatial distribution of remote aftershocks? Bull. seism. Soc. Am., 96(6) 2231–2241.en
dc.description.obiettivoSpecifico3.1. Fisica dei terremotien
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorTosi, P.en
dc.contributor.authorDe Rubeis, V.en
dc.contributor.authorLoreto, V.en
dc.contributor.authorPietronero, L.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.department'La Sapienza' University, Physics Department, and INFM, Center for Statistical Mechanics and Complexity, Roma, Italyen
dc.contributor.department'La Sapienza' University, Physics Department, and INFM, Center for Statistical Mechanics and Complexity, Roma, Italyen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.dept'La Sapienza' University, Physics Department, and INFM, Center for Statistical Mechanics and Complexity, Roma, Italy-
crisitem.author.dept”La Sapienza” University, Physics Department, and INFM, Center for Statistical Mechanics and Complexity, Roma, Italy-
crisitem.author.orcid0000-0003-3247-4318-
crisitem.author.orcid0000-0001-7119-631X-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent05. General-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
SpaceTimeCorrelation_Tosi_GJI.pdfFull article637.98 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

8
checked on Feb 7, 2021

Page view(s)

228
checked on Mar 27, 2024

Download(s)

23
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric