Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/3860
DC FieldValueLanguage
dc.contributor.authorallFederico, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.authorallPizzino, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallCinti, D.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallDe Gregorio, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.authorallFavara, R.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.authorallGalli, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallGiudice, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.authorallGurrieri, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.authorallQuattrocchi, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallVoltattorni, N.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.date.accessioned2008-05-15T09:56:03Zen
dc.date.available2008-05-15T09:56:03Zen
dc.date.issued2008-02en
dc.identifier.urihttp://hdl.handle.net/2122/3860en
dc.description.abstractReaction path modelling, coupled with preparatory inverse modelling, was applied to test this model's ability to reproduce the wide compositional range of ground waters circulating in a restricted area in Piedmont, Italy. This approach is based on the assumption that the chemistry of groundwater evolves through a series of partial equilibria with secondary minerals until it reaches its final composition. PHREEQC [Parkhurst, D.L., Appelo, C.A.J., 1999. User's guide to PHREEQC-A computer program for speciation, reaction-path, 1D-transport, and inverse geochemical calculations. U.S. Geological Survey Water-Resources Investigations Report, pp. 99-4259] and EQ3/6 [Wolery, T.J., Daveler, S.A., 1992. EQ6, A Computer Program for Reaction Path Modeling of Aqueous Geochemical Systems: Theoretical Manual, User's Guide and Related Documentation (version 7.0). Report UCRl-MA-110662 PT IV. Lawrence Livermore National Laboratory, Livermore, California] software packages were used to effect simulations. Reaction-path modelling was performed in time mode, taking into account the different rates of dissolution of each dissolving mineral. Data from literature regarding the kinetic parameters of dissolving minerals and the mineralogical composition of the host-rock were used. The results of the reaction-path modelling show that the composition of the analysed water samples was adequately reproduced, notwithstanding the hydrogeological complexity of the studied area. Modelling results provided very different water compositions as an effect of the chemical maturity, the physico-chemical parameters ( fCO2, fO2, and temperature) and the variable amounts of gypsum among dissolving rock-forming minerals, which occur in Miocene levels of the sedimentary sequence. Further variability is related to the occasional contribution of brackish waters trapped in euxinic marly sediments, locally sealed by overlying clays, that have assumed an artesian character. The composition of some of the water samples can only be predicted by simulation runs performed at a temperature higher than that of the outlet (40 °C). These warm waters probably circulate in a restricted area near the town of Nizza Monferrato. The same area has recently been affected by moderate seismicity, which has been accompanied by changes in either the temperature or chemistry, or both, of the ground waters. The changes recorded, interpreted as having been triggered by variations in the local/regional stress load and/or seismic activity, have to be ascribed to the vertical heterogeneity of the aquifers, where waters of different temperature, salinity and chemical composition circulate and occasionally mix.en
dc.description.sponsorshipMunicipality of Nizza Monferrato (Asti, Italy) and the Regional Administration of Regione Piemonte (Italy)en
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofChemical Geologyen
dc.relation.ispartofseries/ 248(2008)en
dc.subjectReaction-path modellingen
dc.subjectEQ3/6en
dc.subjectInverse modellingen
dc.subjectTertiary Piedmont Basinen
dc.subjectMonferratoen
dc.subjectSeismicityen
dc.titleInverse and forward modelling of groundwater circulation in a seismically active area (Monferrato, Piedmont, NW Italy): Insights into stress-induced variations in water chemistryen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber14-39en
dc.identifier.URLhttp://www.sciencedirect.com/science/journal/00092541en
dc.subject.INGV03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of watersen
dc.identifier.doi10.1016/j.chemgeo.2007.10.007en
dc.relation.referencesAagaard, P., Helgeson, H.C., 1982. Thermodynamic and kinetic constraints on reaction rates among minerals and aqueous solutions, 1. Theoretical considerations. Amer. J. Sci., 282: 237-285. Abercrombie, H.J., Hutcheon, I.E., Bloch, J.D., De Caritat, P., 1994. Silica activity and the smectite-illite reaction. Geology 22, 6: 539-542 Aiuppa, A., Federico, C., Allard, P., Gurrieri, S., Valenza, M., 2005. Trace metal modelling of groundwater-gas-rock interactions in a volcanic aquifer: Mount Vesuvius (Southern Italy). Chem. Geol., 216: 289-311. ARPA Piemonte, 1990. Banca Dati Geologica. Settore Prevenzione del Rischio Geologico, Meteorologico e Sismico. http://gisweb.arpa.piemonte.it/arpagis/index.htm Biella, G.C., Gelati, R., Maistrello, M., Mancuso, M., Massiotta, P., Scarascia, S., 1987. The structure of upper crust in the Alps-Apennines boundary region deduced from refraction seismic data, Tectonophysics, 142: 71-85. Biella, G., Polino, R., De Franco, R., Rossi, P.M., Clari, P., Corsi, A., Gelati, R., 1997. The crustal structure of the western Po plain: reconstruction from integrated geological and seismic data. Terra Nova, 9: 28-31. Bortolami, G., Di Molfetta, A., Verga, G., 1982. Il contributo della geotermia al risparmio energetico in Piemonte: il progetto GEOTORINO. Sistemi Urbani, 1/2: 161-181. Bortolami, G.C., Cravero, M., Olivero, G.F., Ricci, B., Zuppi, G.M., 1983. Chemical and isotopic measurements of geothermal discharges in the Acqui Terme district, Piemonte, Italy. Geothermics, 12: 185-197. Bortolami, G., Masciocco, L., De Vecchi Pellati, R., Ricci, B., Saudino Sughera, B., 2003. Le sorgenti della Collina di Torino e del Monferrato. GEAM, Ambiente e sviluppo sostenibile, 77-82. Bottino, G., Rosa, M.A., Stafferi, L., 1975. Studio dei materiali di alterazione di rocce metamorfiche della Bassa Val Sesia (Piemonte). Atti Soc. Ital. Sci. Nat. Museo Civ. Stor. Nat. Milano, 116 (1-2): 81-114. Brady, P.V., Walther, J.V., 1990. Kinetics of quartz dissolution at low temperatures. Chem. Geol., 82: 253-264. Brantley, S.L., Chen, Y., 1995. Chemical weathering rates of pyroxenes and amphiboles. Chemical Weathering Rates of Silicate Minerals, A.F. White and S.L. Brantley (eds.), Mineralogical Society of America (Washington, D.C.), 31, 119-172. Brookins, D.G., 1988. Eh-pH diagrams for geochemistry. Springer-Verlag, 176 pp. Brown, J.G., Glynn, P.D., 2003. Kinetic dissolution of carbonates and Mn oxides in acidic water: measurement of in situ field rates and reactive transport modelling. Appl. Geochem., 18: 1225-1239. Brunauer, S., Emmett, P. H., Teller, E., 1938. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc., 60: 309-319. Busenberg, E., Clemency, C.V., 1976. The dissolution kinetics of feldspars at 25°C on 1 atm CO2 partial pressure. Geochim. Cosmochim. Acta, 40: 41-49. Capasso, G., Inguaggiato, S., 1998. A simple method for the determination of dissolved gases in natural waters. An application to thermal waters from Vulcano Island. Appl. Geochem., 13: 631-642. Caprara, l., Garzanti, E., Gnaccolini, M., Mutti, L. 1985. Shelf–basin transition: sedimentology and petrology of the Tertiary Piedmont Basin (Northern Italy). Rivista Italiana di Paleontologia e Stratigrafia, 90: 545–564. Cassano, E., Anelli, L., Fichera, R., Cappelli, V., 1986. Pianura Padana. Interpretazione integrata di dati geofisici e geologici (Agip). AGIP, San Donato Milanese. Cassinis, R., 1986. The geophysical exploration of the upper crust from the Ligurian coast to the Northern margin of the Po Valley; problems and results. Tectonophysics, 128: 381-394. Chou, L.R., Garrels, M., Wollast, R., 1989. Comparative study of the kinetics and mechanism of dissolution of carbonate minerals. Chem. Geol., 78: 269-282. Conti, A., Sacchi, E., Chiarle, M., Martinelli, G., Zuppi, G.M., 2000. Geochemistry of the formation waters in the Po Plain (Northern Italy): an overview. Appl. Geochem., 15: 51-65. Craig, H., 1961. Standards for reporting concentrations of deuterium and oxygen-18 in natural waters. Science, 133: 1833-1834. Cubillas, P., Köhler, S., Prieto, M., Chaïrat, C., Oelkers, E.H., 2005. Experimental determination of the dissolution rates of calcite, aragonite, and bivalves. Chem. Geol., 216: 59-77. Eyring, H., 1935. The activate complex in chemical reactions. J. Chem. Phys., 3: 107-115. Fournier, R.O. (1991). Water geothermometers applied to geothermal energy. In: Application of Geochemistry in Geothermal Reservoir Development, F. D’Amore (coord.), Unitar, UNDP, Rome, Italy, 37-69. Gaines, R.V., Skinner, C.W., Foord, E.E., Mason, B, Rosenzweig, A., King, V.T., 1997. Dana’s new mineralogy - The system of mineralogy of James Dwight Dana and Edward Salisbury Dana: Eighth edition, Wiley & Sons, New York, 1819 pp. Gat, J.R., Carmi, I., 1970. Evolution of the isotopic composition of atmospheric waters in the Mediterranean Sea area. J. Geophys. Res., 75: 3032-3048. Ghibaudo, G., Clari, P., Perelo, M., 1985. Litostratigrafia, sedimentologia ed evoluzione tettonico-sedimentaria dei depositi miocenici del margine sud-orientale del bacino terziario ligure-piemontese (Valli Borbera, Scrivia e Lemme). Boll. Soc. Geol. It., 104: 349-397. Gíslason, S.R., Eugster, H.P., 1987. Meteoric water-basalt interactions: I. A laboratory study. Geochim. Cosmochim. Acta, 51: 2827-2840. Glynn, P.D., Brown, J.G., 1996. Reactive transport modeling of acidic metal-contaminated groundwater at a site with sparse spatial information, in Lichtner, P.C., Steefel, C.I., and Oelkers, E.H., eds., Reactive Transport in Porous Media, Reviews in Mineralogy: Washington, D.C., Mineralogical Society of America, 34: 377–438. Glynn, P.D., Plummer, L.N., 2005. Geochemistry and the understanding of ground-water systems. Hydrogeol. J., 13, 1: 263-287. Gnaccolini, M., Rossi, P.M., 1994. Sequenze deposizionali e composizione delle arenarie nel Bacino Terziario Ligure-Piemontese: osservazioni preliminari. Atti Ticinesi di Scienze della Terra, 37: 3-15. Helgeson, H.C., 1968. Evaluation of irreversible reactions in geochemical processes involving minerals and aqueous solutions: I. Thermodynamic relations. Geochim. Cosmochim. Acta, 32: 853–877. Helgeson, H.C., 1979. Mass transfer among minerals and hydrothermal solutions. In Barnes H.L. (ed.), Geochemistry of hydrothermal ore deposits. Wiley, New York, 568-610. Helgeson, H.C., Garrels, R.M., Mackenzie, F.T., 1969. Evaluation of irreversible reactions in geochemical processes involving minerals aqueous solutions: II. Applications. Geochim. Cosmochim. Acta, 33: 455-481. Holdren, G.R., Jr., Speyer, P.M., 1985. Reaction rate-surface area relationships during the early stages of weathering. I. Initial observations. Geochim. Cosmochim. Acta, 49: 675-681. Huertas, F.J., Chou, L., Wollast, R., 1999. Mechanism of kaolinite dissolution at room temperature and pressure Part II: Kinetic study. Geochim. Cosmochim. Acta, 63, 19/20: 3261–3275. Huertas, F. J., Caballero, E., Jimenez de Cisneros, C., Huertas, F., Linares, J., 2001. Kinetics of montmorillonite dissolution in granitic solutions. Appl. Geochem., 16: 397-407. Jeschke, A.A., Vosbeck, K., Dreybrodt, W. (2001) Surface controlled dissolution rates of gypsum in aqueous solutions exhibit nonlinear dissolution kinetics. Geochim. Cosmochim. Acta, 65: 27–34. Jeschke, A. A., Dreybrodt, W., 2002. Dissolution rates of minerals and their relation to surface morphology. Geochim. Cosmochim. Acta., 66: 3055-3062. Köhler, S.J., Dufaud, F., Oelkers, E.H., 2003. An experimental study of illite dissolution kinetics as a function of pH from 1.4 to 12.4 and temperature from 5 to 50°C. Geochim. Cosmochim. Acta, 67: 3583–3594. Knauss K.G., Wolery, T.J., 1986. Dependence of albite dissolution kinetics on pH and time at 25°C and 70°C. Geochim. Cosmochim. Acta, 50: 2481-2497. Knauss, K.G., Wolery, T.J., 1988. The dissolution kinetic of quartz as a function of pH and time at 70 C. Geochim. Cosmochim. Acta, 52: 43-53. Lecomte, K. L., Pasquini, A. I., Depetris, P. J., 2005. Mineral weathering in a semiarid Mountain River: Its assessment through PHREEQC inverse modeling. Aquatic Geochem., 11: 173 – 194. Lowson, R.T., Brown, P.L., Comarmond M.-C.J., Rajaratnam, G., 2005. The kinetics of the dissolution of chlorite as a function of pH and at 25 °C. Geochim. Cosmochim. Acta, 69: 1687–1699. Marini, L., Bonaria, V., Guidi, M., Hunziker, J.C., Ottonello, G., Vetuschi Zuccolini, M., 2000. Fluid geochemistry of the Acqui Terme-Visone geothermal area (Piemonte, Italy). Appl. Geochem., 15: 917-935. Marini, L., Canepa, M., Cipolli, F., Ottonello, G., Vetuschi Zuccolini, M., 2001. Use of stream sediment chemistry to predict trace element chemistry of groundwater. A case study from the Bisagno valley (Genoa, Italy). J. Hydrol., 241: 194-220. Miletto, M., Polino, R., 1992. A gravity model of the crust beneath the Tertiary Piedmont basin (Northwestern Italy). Tectonophysics, 212: 243-256. Oelkers, E.H., 2001. A general kinetic description of multi-oxide silicate mineral and glass dissolution. Geochim. Cosmochim. Acta, 65: 3703-3719. Oelkers, E. H., Schott, J., Devidal, J. L., 1994. The effect of aluminium, pH and chemical affinity on the rates of aluminosilicate dissolution reactions. Geochim. Cosmochim. Acta, 58: 2011–2024. Olivero, G. F., Ricchiuto, T., Zauli, M., Zuppi, G. M., 1987. Isotopic composition and origin of Sulphur compounds in groundwater and brines in Po Valley. Proceedings of an Advisory Group Meeting on “Studies on sulphur isotope variations in nature”, IAEA, Vienna, 49-64. Pačes, T., 1973. Steady-state kinetics and equilibrium between groundwater and granitic rock. Geochim. Cosmochim. Acta, 37: 2641–2663. Pačes, T., 1978. Reversible control of aqueous aluminium and silica during the irreversible evolution of natural waters. Geochim. Cosmochim. Acta 42: 1487– 1493. Pačes, T., 1983. Rate constants of dissolution derived from the measurements of mass balance in hydrological aquifers. Geochim. Cosmochim. Acta, 47: 1855– 1864. Parkhurst, D.L., 1997. Geochemical mole-balance modelling with uncertain data. Water Resour. Res., 33, 9: 1957-1970. Parkhurst, D.L., Appelo, C.A.J., 1999. User’s guide to PHREEQC-A computer program for speciation, reaction-path, 1D-transport, and inverse geochemical calculations. U.S. Geological Survey Water-Resources Investigations Report, 99-4259. Parsons, M.B., Bird, D.K., Einaudi, M.T., Alpers, C.N., 2001. Geochemical and mineralogical controls on trace element release from the Penn mine base-metal slag dump, California. Appl. Geochem., 16: 1567-1593. Pasquale, V., Verdoya, M., Chiozzi, P., 2001. Radioactive heat generation and its thermal effects in the Alps-Apennines boundary zone. Tectonophysics, 331: 269-283. Pieri, M., Groppi, G., 1981. Subsurface geological structure of the Po Plain. C.N.R., P. F. Geodinamica, 414: 278-286. Pigorini, B., Soggetti, F., Veniale, F., 1970. Studio petrografico di alcune serie sedimentarie mio-plioceniche e quaternarie del pedeappennino vogherese. Atti Soc. it. Sci. Nat., Museo Civ. Stor. Nat. Milano, 110: 277-316. Plummer, L.N., Busenberg, E., 1982. The solubility of calcite, aragonite and vaterite in CO2–H2O solutions between 0 and 90 °C, and an evaluation of the aqueous model for the system CaCO3–CO2–H2O. Geochim. Cosmochim. Acta, 46: 1011-1040. Plummer, L.N., Prestemon, E.C., and Parkhurst, D.L., 1991, An interactive code (NETPATH) for modeling net geochemical reactions along a flow path: U.S. Geological Survey WaterResources Investigations Report 91-4087, 227 p. Quattrocchi, F., Favara R., Capasso G., Pizzino L., Bencini R., Cinti D., Galli G., Grassa F., Francofonte S., Volpicielli G., 2003. Thermal Anomalies and fluid geochemistry framework in occurrence of the 2000-2001 Nizza-Monferrato seismic sequence (Northern Italy): episodic changes in the fault zone heat flow or chemical mixing phenomena? Natural Hazard and Earth System Sciences, 3: 269-277. Reddy, M., Plummer, L., Busenberg, E., 1981. Crystal growth of calcite from calcium bicarbonate solutions at constant P(CO2) and 25 °C: A test of a calcite dissolution model. Geochim. Cosmochim. Acta, 45, 2181–2189. Reed, M. H., Spycher, N.F., 1984. Calculation of pH and Mineral Equilibria in Hydrothermal Waters With Application to Geothermometry and Studies of Boiling and Dilution. Geochim. Cosmochim. Acta, 48: 1479-1492. Sciuto, P.F., Ottonello, G., 1995a. Water-rock interaction on Zabargad Island (Red Sea), a case study: I) Application of the concept of local equilibrium. Geochim. Cosmochim. Acta, 59: 2187-2206. Sciuto, P.F., Ottonello, G., 1995b. Water-rock interaction on Zabargad Island (Red Sea), a case study: II) From local equilibrium to irreversible exchanges. Geochim. Cosmochim. Acta, 59: 2207-2213. Stefánsson, A., Gíslason, S. R., 2001. Chemical weathering of basalts, SW Iceland: effect of rock crystallinity and secondary minerals on chemical fluxes to the ocean. Am. J. Sci., 301: 513-556. White, A.F., Brantley, S.L. (eds.), 1995. Chemical Weathering Rates of Silicate Minerals. Rev. Mineral., 31, Mineralogical Society of America (Washington, D.C.), 583 p.p. Wieland, E., Wehrli, B., Stumm, W., 1988. The coordination chemistry of weathering: III. A generalization on the dissolution rates of minerals. Geochim. Cosmochim. Acta, 52: 1969-1981. Williamson, M.A., Rimstidt, J.D., 1994. The kinetics and electrochemical rate-determining step of aqueous pyrite oxidation. Geochim. Cosmochim. Acta, 58: 5443–5454. Wolery, T.J., 1992. EQ3NR, A Computer Program for Geochemical Aqueous Speciation-Solubility Calculations: Theoretical Manual, User’s Guide, and Related Documentation (Version 7.0). Report UCRL-MA-110662 PT III. Lawrence Livermore National Laboratory, Livermore, California. Wolery, T.J., Daveler, S.A., 1992. EQ6, A computer program for reaction path modeling of aqueous geochemical systems: theoretical manual, user’s guide and related documentation (version 7.0). Report UCRl-MA-110662 PT IV. Lawrence Livermore National Laboratory, Livermore, California. Zavatti, A., Attramini, D., Bonazzi, A., Boraldi, V., Malaga, R., Martinelli, G., Naldi, S., Patrizi, G., Pezzera, G., Vandini, W., Venturini, L., Zuppi, G.M., 1995. La presenza di arsenico nelle acque sotterranee della Pianura Padana: evidenze ambientali e ipotesi geochimiche. Atti del II° Convegno Nazionale sulla protezione e gestione delle acque sotterranee. Metodologie, tecnologie e obiettivi. Pitagora Editrice, Bologna. Nonantola (MO) 17/19 May 1995, volume 2, Quaderni Geol. Appl., 1, 1996: 2301-2326.en
dc.description.obiettivoSpecifico1.1. TTC - Monitoraggio sismico del territorio nazionaleen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorFederico, C.en
dc.contributor.authorPizzino, L.en
dc.contributor.authorCinti, D.en
dc.contributor.authorDe Gregorio, S.en
dc.contributor.authorFavara, R.en
dc.contributor.authorGalli, G.en
dc.contributor.authorGiudice, G.en
dc.contributor.authorGurrieri, S.en
dc.contributor.authorQuattrocchi, F.en
dc.contributor.authorVoltattorni, N.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.orcid0000-0001-8887-2580-
crisitem.author.orcid0000-0002-1062-2757-
crisitem.author.orcid0000-0002-8995-3312-
crisitem.author.orcid0000-0001-7713-9105-
crisitem.author.orcid0000-0003-4588-2935-
crisitem.author.orcid0000-0002-8647-4308-
crisitem.author.orcid0000-0002-9410-4139-
crisitem.author.orcid0000-0003-4085-0440-
crisitem.author.orcid0000-0002-7822-1394-
crisitem.author.orcid0000-0002-3940-8383-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent03. Hydrosphere-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Federico et al..pdfMain article2.27 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

20
checked on Feb 7, 2021

Page view(s) 50

422
checked on Apr 17, 2024

Download(s)

31
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric