Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/385
DC FieldValueLanguage
dc.contributor.authorallRevil, A.; CNRS-CEREGE, Department of Hydrogeophysics and Porous Media,en
dc.contributor.authorallFinizola, A.; Laboratoire Magmas et Volcans, Universit´e Blaise Pascal, OPGC,en
dc.contributor.authorallSortino, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.authorallRipepe, M.; Università di Firenze, Dipartimento di Scienze della Terra, via G. La Pira, 4, I-50121, Firenze, Italy.en
dc.date.accessioned2005-09-06T11:50:24Zen
dc.date.available2005-09-06T11:50:24Zen
dc.date.issued2004en
dc.identifier.urihttp://hdl.handle.net/2122/385en
dc.description.abstractStromboli volcano (Italy) is characterized by a permanent mild explosive activity disrupted by major and paroxysmal eruptions. These strong eruptions could be triggered by phreatomagmatic processes. With the aim of obtaining a better understanding of ground water flow in the vicinity of the active vents, we carried out a set of geophysical measurements along two profiles crossing the Fossa area (through the Pizzo, the Large and the Small Fossa craters). These measurements include electrical resistivity, induced polarization, self-potential, temperature and CO2 ground concentration. These methods are used in order to delineate the crater boundaries, which act as preferential fluid flow pathways for the upflow of hydrothermal fluids. The absence of fumarolic activity in the Fossa area and the ground temperature close to 100 °C at a depth of 30 cm indicate that the hydrothermal fluids condense close to the ground surface. Part of this condensed water forms a shallow drainage network (<20 m) in which groundwater flows downslope toward a perched aquifer. The piezometric surface of this aquifer is located ∼20 m below the topographic low of the Small Fossa crater and is close (<100 m) to the active vents. Electrical resistivity tomography, temperature and CO2 measurements show that this shallow aquifer separates the underlying hydrothermal body from the ground surface. Further studies are needed to ascertain the size of this aquifer and to check its possible implications for the major and paroxysmal events observed at the Stromboli volcano.en
dc.format.extent878606 bytesen
dc.format.extent543 bytesen
dc.format.mimetypeapplication/pdfen
dc.format.mimetypetext/htmlen
dc.language.isoEnglishen
dc.publisher.nameBlackwellen
dc.relation.ispartofGeophysical Journal Internationalen
dc.relation.ispartofseries157(2004)en
dc.subjectfluid flowen
dc.subjectCO2 soil concentrationen
dc.subjectSelf-potentialen
dc.subjectStrombolien
dc.subjectvolcanic activityen
dc.titleGeophysical investigations at Stromboli volcano, Italy: implications for ground water flow and paroxysmal activityen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber426–440en
dc.identifier.URLhttp://www.blackwell-synergy.comen
dc.subject.INGV04. Solid Earth::04.02. Exploration geophysics::04.02.04. Magnetic and electrical methodsen
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniquesen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoringen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropyen
dc.identifier.doi10.1111/j.1365-246X.2004.02181.xen
dc.relation.referencesAubert, M. & Atangana, Y., 1996. Self-potential method in hydrogeological exploration of volcanic areas, Ground Water, 34, 1010–1016. Aubert, M. & Baubron, J.C., 1988. Identification of a hidden thermal fissure in a volcanic terrain using a combination of hydrothermal convection indicators and soil–atmosphere analysis, J. Volc. Geotherm. Res., 35, 217–225. Aubert, M. & Dupuy, J.C., 2000. Geophysics and hydrogeology in volcaniclastic rocks, in, Volcaniclastic Rocks, from Magma to Sediments, Vol. 13, pp. 253–266, eds Gordon and Breach, New York. Aubert, M., Antraygues, P. & Soler, E., 1993. Interprétation des mesures de polarisation spontanée (PS) en hydrogéologie des terrains volcaniques. Hypothéses sur l’existence d’écoulements préférentiels sur le flanc Sud du Piton de la Fournaise (Ile de la Réunion), Bull. Soc. Géol. France, 164, 17–25. Ballestracci, R., 1982. Self-potential survey near the craters of Stromboli volcano (Italy). Inference for internal structure and eruption mechanism, Bull. Volcanol., 45, 349–365. Barberi, F., Rosi, M. & Sodi, A., 1993. Volcanic hazard assessment at Stromboli based on review of historical data, Acta Vulcanol., 3, 173–187. Barberi, F., Carapezza, M.L., Alean, J. & Carniel, R., 2001. Major explosion at Stromboli kills a tourist on 20 October 2001, Bull. Glob. Volc. Net., 26, 2–3. Bernabé, Y., 1998. Streaming potential in heterogeous networks, J. geophys. Res., 103, 20 827–20 841. Bertagnini, A., Coltelli, M., Landi, P., Pompilio, M.&M. Rosi, 1999.Violent explosions yield new insights into dynamics of Stromboli volcano, EOS, Trans. Am. geophys. Un., 80, 633–636. Boubekraoui, S., Courteaud, M., Aubert, M., Albouy,Y.& Coudray, J., 1998. New insights into the hydrogeology of a basaltic shield volcano, from SP and electromagnetic data, The case history of the Piton de la Fournaise, Indian Ocean, J. appl. Geophys., 40, 165–177. B¨uttner, R., Zimanowski, B. & R¨oder H., 2000. Short-time electrical effects during volcanic eruption: experiments and field measurements, J. geophys. Res., 105, 2819–2827. Chébli,Y., 1997. Tomographie thermique et géoélectrique du cratère du Vulcano, Mémoire de D.E.A. Processus Magmatiques et Métamorphiques— Volcanologie, p. 60, Université Blaise Pascal, Clermont-Ferrand II. Clint, O.C., 1999. Electrial potential changes and acoustic emissions generated by fracture and fluid flow during experimental triaxial rock deformation, PhD thesis, p. 236, University College London. Di Maio, R. & Patella, D., 1994. Self-potential anomaly generation in volcanic areas. The Mount Etna case history, Acta Vulcanologica, 4, 119– 124. Di Maio, R., Di Sevo, V., Giammetti, S., Patella, D., Piscitelli, S. & Silenziario, C., 1996. Self-potential anomalies in some italian volcanic areas, Ann. Geofis., 39, 179–188. Finizola, A., Sortino, S., Lénat, J.-F. & Valenza, M., 2002. Fluid circulation at Stromboli volcano (Aeolian Islands, Italy) from self-potential and CO2 surveys, J. Volc. Geotherm. Res., 116, 1–18. Finizola, A., Sortino, S., Lénat, J.-F., Aubert, M., Ripepe, M. & Valenza, M., 2003. The summit hydrothermal system of Stromboli. New insights from self-potential, temperature, CO2 and fumarolic fluid measurements. Structural and monitoring implications, Bull. Volcanol., 65, 486–504, doi:10.1007/s00445-003-0276-z. Fischer, T.P., Arehart, G.B., Sturchio, N.C. & Williams, S.N., 1996. The relationship between fumarole gas composition and eruptive activity at Galeras Colcano, Columbia, Geology, 24, 531–534. Fournier, C., 1989. Spontaneous potentials and resistivity surveys applied to hydrogeology in a volcanic area: case history of the Chaˆıne des Puys, Geophys. Prospect., 37, 647–668. Gibert,D.& Pessel, M., 2001. Identification of sources of potential fields with the continuous wavelet transform: application to self-potential profiles, Geophys. Res. Lett., 28, 1863–1866. Jackson, D.B. & Kauahikaua, J., 1987. Regional self-potential anomalies at Kilauea volcano, ‘Volcanism in Hawaii’ chapter 40 USGS Professional paper 1350, 947–959. Jaupart, C. & Vergniolle, S., 1988. Laboratory models of Hawaiian and Strombolian eruptions, Nature, 331, 58–60. Jaupart, C. & Vergniolle, S., 1990. The generation and collapse of a foam layer at the roof of a basaltic magma chamber, J. Fluid Mech., 203, 347– 380. Johnston, M.J.S., Byerlee, J.D. & Lockner, D., 2001. Rapid fluid disruption: a source for self-potential anomalies on volcanoes, J. geophys. Res., 106, 4327–4335. Jouniaux, L., Bernard, M.-L., Zamora, M. & Pozzi, J.-P., 2000. Streaming potential in volcanic rocks from Mount Pelée, J. geophys. Res., 105, 8391– 8401. La Rocca, M., Saccorotti, G., Del Pezzo E. & Ibanez, J., 2003. Probabilistic source location of explosion quakes at Stromboli volcano estimated with multiple array data, J. Volcanol. Geotherm. Res., 131, 123–142. Lewicki, J.L., Connor, C., St-Amand, K., Stix, J. & Spinner,W., 2003. Selfpotential, soil CO2 flux, and temperature on Masaya volcano, Nicaragua, Geophys. Res. Lett., 30, 1817, doi:10.1029/2003GL017731. Llera, F.J., Sato, M., Nakatsuka, K. & Yokoyama, H., 1990. Temperature dependence of the electrical resistivity ofwater-saturated rocks, Geophysics, 55, 576–585. Loke, M.H. & Barker, R.D., 1996. Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method, Geophys. Prospec., 44, 131–152. Métrich, N., Bertagnini, A., Landi, P. & Rosi, M., 2001. Crystallisation driven by decompression and water loss at Stromboli volcano (Aeolian Island), J. Petrol., 42, 1471–1490. Ortoleva, P.J., 1994. Basin Compartments and Seals, AAPG Memoir 61, Tulsa, 3–26, p. 477. Patella, D., 1997. Self-potential global tomography including topographic effects, Geophys. Prospect., 45, 843–863. Perrier, F. & Morat, P., 2000. Characterization of electrical daily variations induced by capillary flow in the non-saturated zone, Pure appl. Geophys., 157, 785–810. Poldini, E., 1938. Geophysical exploration by spontaneous polarisation methods, Mining Mag., London, 59, 278–282, 347–352. Revil, A., 2002a. Comment on ‘Rapid fluid disruption: a source for selfpotential anomalies’ by Johnston, M.J.S., et al., J. geophys. Res., 107, doi:10.1029/2001JB000788. Revil, A., 2002b. The hydroelectric problem of porous rocks: thermodynamic approach and introduction of a percolation threshold, Geophys. J. Int., 151, 944–949. Revil, A., Naudet,V., Nouzaret, J.&Pessel, M., 2003a. Principles of electrography applied to self-potential electrokinetic sources and hydrogeological applications, Water Resources Res., 39, doi:10.1029/2001WR000916. Revil, A., Saracco, G. & Labazuy, P., 2003b. The volcano-electric effect, J. geophys. Res., 108, doi:10.1029/2002JB001835. Ripepe, M. & Gordeev, E., 1999. Gas bubble dynamics model for shallow volcanic tremor at Stromboli, J. geophys. Res., 104, 10 639–10 654. Ripepe, M., Poggi, P., Braun T. & Gordeev, E., 1996. Infrasonic waves and volcanic tremor at Stromboli, Geophys. Res. Lett., 23, 181–184. Ripepe, M., Ciliberto, S. & Schiava, M.D., 2001. Time constraints for modeling source dynamics of volcanic explosions at Stromboli, J. geophys. Res., 106, 8713–8727. Rittmann, A., 1931. Der Ausbruch des Stromboli am 11 September 1930, Zeits. Vulkanol., 14, 47–77. Trique, M., Richon, P., Perrier, F., Avouac, J.P. & Sabroux, J.C., 1999. Radon emanation and electric potential variations associated with transient deformation near reservoir lakes, Nature, 399, 137–141. Trique, M., Perrier, F., Froidefond, T., Avouac, J.P. & Hautot, S., 2002. Fluid flow near reservoir lakes inferred from the spatial and temporal analysis of the electric potential, J. geophys. Res., 107, 10.1029/2001JB000482. Yoshida, S., 2001. Convection current generated prior to rupture in saturated rocks, J. geophys. Res., 106, 2103–2120. Zlotnicki, J. & Le Mou¨el, J.L., 1988. Volcanomagnetic effects observed on Piton de la Fournaise Volcano (R´eunion Island): 1985–1987, J. geophys. Res., 93, 9157–9171. Zohdy, A.A., Anderson, L.A. & Muffler, L.J.P., 1973. Resistivity, selfpotential, and induced-polarisation surveys of a vapor-dominated geothermal system, Geophysics, 38, 1130–1144.en
dc.description.fulltextpartially_openen
dc.contributor.authorRevil, A.en
dc.contributor.authorFinizola, A.en
dc.contributor.authorSortino, F.en
dc.contributor.authorRipepe, M.en
dc.contributor.departmentCNRS-CEREGE, Department of Hydrogeophysics and Porous Media,en
dc.contributor.departmentLaboratoire Magmas et Volcans, Universit´e Blaise Pascal, OPGC,en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.departmentUniversità di Firenze, Dipartimento di Scienze della Terra, via G. La Pira, 4, I-50121, Firenze, Italy.en
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptCentre National de la Recherche Scientifique, Université Paul Cézanne-Aix-Marseille III, CEREGE, Equipe Hydrogéophysique et Milieux Poreux, Aix-en-Provence, France.-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.orcid0000-0002-5083-7349-
crisitem.author.orcid0000-0002-2400-911X-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Revil et al., Geoph. J. Intern (2004).pdfMain article858.01 kBAdobe PDF
Redirect Blackwell.htmlRedirect-Blackwell543 BHTMLView/Open
Show simple item record

WEB OF SCIENCETM
Citations

81
checked on Feb 10, 2021

Page view(s) 20

296
checked on Apr 17, 2024

Download(s)

98
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric