Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/3848
DC FieldValueLanguage
dc.contributor.authorallMarra, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallFlorindo, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallBoschi, E.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione AC, Roma, Italiaen
dc.date.accessioned2008-05-13T08:23:28Zen
dc.date.available2008-05-13T08:23:28Zen
dc.date.issued2008en
dc.identifier.urihttp://hdl.handle.net/2122/3848en
dc.description.abstractWe document the aggradational history of the Tiber River delta through the last 17,000 years by means of 17 new 14C ages from peat or wood collected from the delta sediment. An abrupt change in sediment clast size, grading from gravel to clay, occurred between 13.63 (±0.20) and 12.80 (±0.15) ka, indicating that it was synchronous with the last glacial termination, with no appreciable phase lag. Knowing this phase relationship enables us to reduce the magnitudes of age uncertainties for aggradational sections corresponding to glacial terminations IX through III, which we had dated previously by 40Ar/39Ar methods. Glacial terminations VIII, VI, and IV precede beyond 95% confidence the ages predicted by Northern Hemisphere summer insolation maxima. Additionally, we find that each of these seven glacial terminations follows particularly mild insolation minima, which we suggest may be regarded as the preconditioning factor to trigger a glacial termination.en
dc.language.isoEnglishen
dc.publisher.nameAGUen
dc.relation.ispartofPaleoceanographyen
dc.relation.ispartofseries/23 (2008)en
dc.subjectclimate changesen
dc.titleHistory of glacial terminations from the Tiber River, Rome: Insights into glacial forcing mechanismsen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberPA2205en
dc.subject.INGV01. Atmosphere::01.01. Atmosphere::01.01.03. Pollutionen
dc.subject.INGV03. Hydrosphere::03.01. General::03.01.06. Paleoceanography and paleoclimatologyen
dc.identifier.doi10.1029/2007PA001543en
dc.relation.referencesAmmerman, A. J., J. Miller, and S. Ramsay (2000), The mid-Holocene environment of the Velabrum in Rome, in Quaderno, vol. 8, pp. 9 – 20, Soc. Preistoria Protostoria Friuli- Venezia Giulia, Trieste, Italy. Bard, B., E. Hamelin, and R. Fairbanks (1990), U-Th ages obtained by mass spectrometry in corals from Barbados: Sea level during the past 130000 years, Nature, 346, 456 – 458, doi:10.1038/346456a0. Bard, E., E. Hamelin, M. Arnold, L. Montaggioni, G. Cabioch, G. Faure, and F. Rougerie (1996), Deglacial sea-level record from Tahiti corals and the timing of global meltwater discharge, Nature, 382, 241– 244, doi:10.1038/ 382241a0. Bassinot, F. C., L. D. Labeyrie, E. Vincent, X. Quidelleur, N. J. Shackleton, andY. Lancelot (1994), The astronomical theory of climate and the age of the Brunhes-Matuyama magnetic reversal, Earth Planet. Sci. Lett., 126, 91– 108, doi:10.1016/0012-821X(94)90244-5. Belluomini, G., G. P. Iuzzolini, L. Manfra, R. Mortari, and M. Zalaffi (1986), Evoluzione recente del delta del Tevere, Geol. Rom., 25, 213–234. Bjo¨rck, S., M. J. C. Walker, L. C. Cwynar, S. Johnsen, K. L. Knudsen, J. J. Lowe, B. Wohlfarth, and the INTIMATE Members (1998),Anevent stratigraphy for the LastTermination in the North Atlantic region based on the Greenland ice-core record: A proposal by the INTIMATE group, J. Quat. Sci., 13, 283 – 292, doi:10.1002/(SICI)1099-1417(199807/ 08)13:4<283::AID-JQS386>3.0.CO;2-A. Bozzano, F., R. Funiciello, M. Gaeta, F. Marra, and G. Valentini (1997), Recent alluvial deposits in Rome (Italy): Morpho-stratigraphic, mineralogical and geomechanical characterisation, paper presented at the International Symposium on Engineering, Geology, and the Environment, Int. Assoc. for Eng. Geol., Athens, 23– 27 June. Bozzano, F., A. Andreucci, M. Gaeta, and R. Salucci (2000), A geological model of the buried Tiber River valley beneath the historical centre of Rome, Bull. Eng. Geol. Environ., 59, 1 –21, doi:10.1007/s100640000051. Conato, V., D. Esu, A. Malatesta, and F. Zarlenga (1980), New data on the Pleistocene of Rome, Quaternaria, 22, 131– 176. Corazza, A., M. Lanzini, C. Rosa, and R. Salucci (1999), Caratteri stratigrafici, idrogeologici e geotecnici delle alluvioni Tiberine nel settore del centro storico di Roma, Quaternio, 12, 215– 235. Fairbanks, R. G. (1989), A 17,000 years glacioeustatic sea-level record: Influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation, Nature, 342, 637– 642, doi:10.1038/342637a0. Florindo, F., D. B. Karner, F. Marra, P. R. Renne, A. P. Roberts, and R. Weaver (2007), Radioisotopic age constraints for glacial terminations IX and VII from aggradational sections of the Tiber River delta in Rome, Italy, Earth Planet. Sci. Lett., 256, 61 – 80, doi:10.1016/ j.epsl.2007.01.014. Gallup, C. D., H. Cheng, F. W. Taylor, and R. L. Edwards (2002), Direct determination of the timing of sea level change during termination II, Science, 295, 310 – 313, doi:10.1126/ science.1065494. Giaccio, B., I. Hajdas, M. Peresani, F. G. Fedele, and R. Isaia (2005), The Campanian Ignimbrite (c.40 ka B. P.) and its relevance for the timing of the Middle to Upper Palaeolithic shift: Timescales and regional correlations, in When Neanderthals and Modern Humans Met, Tu¨bingen Publications in Prehistory, edited by PA2205 MARRA ET AL.: TIBER RIVER GLACIAL TERMINATIONS HISTORY 16 of 17 PA2205 N. Conrad, pp. 343 – 365, Kerns-Verlag, Tu¨- bingen, Germany. Huybers, P. (2006), Early Pleistoicene glacial cycles and the integrated summer insolation forcing, Science, 313, 508 – 511, doi:10.1126/ science.1125249. Huybers, P., and C. Wunsch (2004), A depthderived Pleistocene age model: Uncertainty estimates, sedimentation variability, and nonlinear climate change, Paleoceanography, 19, PA1028, doi:10.1029/2002PA000857. Huybers, P., and C. Wunsch (2005), Obliquity pacing of the late Pleistocene glacial terminations, Nature, 434, 491– 494, doi:10.1038/ nature03401. Imbrie, J., J.D.Hays,D.G.Martinson,A. McIntyre, A. C. Mix, J. J. Morley, N. G. Pisias, W. L. Prell, and N.J. Shackleton (1984). The orbital theory of Pleistocene climate: Support from a revised chronology of the marine d18O record, in Milankovitch and Climate, Part 1, edited by A. L. Berger, pp. 269–305, Springer, Norwell, Mass. Karner, D. B., and F. Marra (1998), Correlation of fluviodeltaic aggradational sections with glacial climate history: A revision of the classical Pleistocene stratigraphy of Rome, Geol. Soc. Am. Bull., 110, 748–758, doi:10.1130/ 0016-7606(1998)110<0748:COFASW> 2.3.CO;2. Karner, D. B., and F. Marra (2003), 40Ar/39Ar dating of glacial termination Vand the duration of marine isotopic stage 11, in Earth’s Climate and Orbital Eccentricity: The Marine Isotope Stage 11 Question, Geophys. Monogr. Ser., vol. 137, edited by A. W. Droxler, R. Z. Poore, and L. H. Burckle, pp. 61 – 66, AGU, Washington, D. C. Karner, D. B., and P. R. Renne (1998), 40Ar/39Ar geochronology of Roman province tephra in the Tiber River Valley: Age calibration of Middle Pleistocene sea-level changes, Geol. Soc. Am. Bull., 110, 740 – 747, doi:10.1130/0016- 7606(1998)110<0740:AAGORV>2.3.CO;2. Karner, D. B., F. Marra, and P. R. Renne (2001a), The history of the Monti Sabatini and Alban Hills volcanoes: Groundwork for assessing volcanic-tectonic hazards for Rome, J. Volcanol. Geotherm. Res., 107, 185 – 215, doi:10.1016/S0377-0273(00)00258-4. Karner, D. B., F. Marra, F. Florindo, and E. Boschi (2001b), Pulsed uplift estimated from terrace elevations in the coast of Rome: Evidence for a new phase of volcanic activity?, Earth Planet Sci. Lett., 188, 135 – 148, doi:10.1016/S0012-821X(01)00325-9. Karner, D. B., J. Levine, B. P. Medeiros, and R. A. Muller (2002), Constructing a stacked benthic d18O record, Paleoceanography, 17(13), 1030, doi:10.1029/2001PA000667. Lambeck, K., F. Antonioli, A. Purcell, and S. Silenzi (2004), Sea-level change along the Italian coast for the past 10,000 yr, Quat. Sci. Rev., 23, 1567– 1598, doi:10.1016/j.quascirev. 2004.02.009. Laskar, J., P. Robutel, F. Joutel, and M. Gastineau (2004), A long-term numerical solution for the insolation quantities of the Earth, Astron. Astrophys., 428, 261–285, doi:10.1051/ 0004-6361:20041335. Lisiecki, L. E., and M. E. Raymo (2005), A Pliocene-Pleistocene stack of 57 globally distributed benthic d18O records, Paleoceanography, 20, PA1003, doi:10.1029/2004PA001071. Marra, F. (1993), Stratigrafia e assetto geologicostrutturale dell’area romana tra il Tevere e il Rio Galeria, Geol. Rom., 29, 515–535. Marra, F. (2004), Reply to comment by G. Giordano, A. Esposito, D. De Rita, M. Fabbri, I. Mazzini, A. Trigari, C. Rosa, and R. Funiciello on ‘‘The sedimentation along the Roman coast between middle and upper Pleistocene: The interplay of eustatism, tectonics and volcanism - new data and review,’’ Quaternio, 17(2/2), 643– 645. Marra, F., and C. Rosa (1995), Stratigrafia e assetto geologico dell’area Romana, in La Geologia di Roma, Mem. Descr. Carta Geol. d’Ital., vol. 50, edited by R. Funiciello, pp. 49– 118, Istituto Poligrafico e Zecca dello Stato, Rome. Marra, F., F. Florindo, and D. B. Karner (1998), Paleomagnetism and geochronology of early Middle Pleistocene depositional sequences near Rome: Comparison with the deep sea d18O climate record, Earth Planet. Sci. Lett., 159, 147 – 164, doi:10.1016/S0012- 821X(98)00071-5. Marra, F., C. Freda, P. Scarlato, J. Taddeucci, D. B. Karner, P. R. Renne, M. Gaeta, D. M. Palladino, R. Trigila, and G. Cavarretta (2003), Post-caldera activity in the Alban Hills Volcanic District (Italy): 40Ar/39Ar geochronology and insights into magma evolution, Bull. Volcanol., 65, 227– 247. Mortari, R., S. Talone, and S. Trastulli (1979), Una stratigrafia geotecnica nelle alluvioni recenti del Tevere presso Ponte Galeria, Boll. Soc. Geol. Ital., 98, 109–118. Peltier, W. R., and R. G. Fairbanks (2006), Global ice volume and Last Glacial Maximum duration from an extended Barbados sea-level record, Quat. Sci. Rev., 25, 3322 – 3337, doi:10.1016/j.quascirev.2006.04.010. Petit, J. R., et al. (1999), Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica, Nature, 399, 429– 436, doi:10.1038/20859. Raymo, M. E. (1997), The timing of major climate terminations, Paleoceanography, 12(4), 577– 585, doi:10.1029/97PA01169. Shackleton, N. J., and M. A. Hall (1984), Oxygen and carbon isotope stratigraphy of Deep Sea Drilling Project. Hole 552A: Plio-Pleistocene glacial history, Initial Rep. Deep Sea Drill. Proj., 81, 599– 609. Shackleton, N. J., and N. D. Opdyke (1976), Oxygen isotope and paleomagnetic stratigraphy of Pacific core V28– 239 late Pliocene to latest Pleistocene, in Investigation of Late Quaternary Paleo-Oceanography and Paleo- Climatology, edited by R. M. Cline and J. D. Heys, Mem. Geol. Soc. Am., 145, 216–219. Siddall,M.,E.Bard,E.J.Rohling,andC.Hemleben (2006a),Sea-levelreversalduringTerminationII, Geology, 34(10), 817 – 820, doi:10.1130/ G22705.1. Siddall, M., J. Chappell, and E.-K. Potter (2006b), Eustatic sea level during past interglacials, in The Climate of Past Interglacials, edited by F. Sirocko et al., pp. 75– 92, Elsevier, Amsterdam. Siddall, M., T. F. Stocker, T. Blunier, R. Spahni, J. Schwander, J.-M. Barnola, and J. Chappellaz (2007), Marine Isotope Stage (MIS) 8 millennial variability stratigraphically identical to MIS 3, Paleoceanography, 22, PA1208, doi:10.1029/2006PA001345. Stanford, J. D., E. J. Rohling, S. E. Hunter, A. P. Roberts, S. O. Rasmussen, E. Bard, J.McManus, and R. G. Fairbanks (2006), Timing of meltwater pulse 1a and climate responses to meltwater injections, Paleoceanography, 21, PA4103, doi:10.1029/2006PA001340. Stuiver, M., P. J. Reimer, and T. F. Braziunas (1998), High-precision radiocarbon age calibration for terrestrial and marine samples, Radiocarbon, 40(3), 1127– 1151. Winograd, I. J., T. B. Coplen, J. M. Landwehr, A. C. Riggs, K. R. Ludwig, B. J. Szabo, P. T. Kolesar, and K. M. Revesz (1992), Continuous 500,000-year climate record from vein calcite in Devils Hole Nevada, Science, 258, 255– 260, doi:10.1126/science.258.5080.255.en
dc.description.obiettivoSpecifico2.2. Laboratorio di paleomagnetismoen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorMarra, F.en
dc.contributor.authorFlorindo, F.en
dc.contributor.authorBoschi, E.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione AC, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione AC, Roma, Italia-
crisitem.author.orcid0000-0002-4881-9563-
crisitem.author.orcid0000-0002-6058-9748-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent01. Atmosphere-
crisitem.classification.parent03. Hydrosphere-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
paleoceanography.pdf4.53 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

38
checked on Feb 10, 2021

Page view(s) 10

307
checked on Apr 20, 2024

Download(s)

29
checked on Apr 20, 2024

Google ScholarTM

Check

Altmetric