Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/3824
DC FieldValueLanguage
dc.contributor.authorallNavarra, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.authorallGualdi, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.authorallMasina, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.authorallBehera, S.; Frontier Research System FRCGC, Yokohama, Japanen
dc.contributor.authorallLuo, J.-J.; Frontier Research System FRCGC, Yokohama, Japanen
dc.contributor.authorallMasson, S.; Frontier Research System FRCGC, Yokohama, Japanen
dc.contributor.authorallGuilyardi, E.; IPSL/LSCE, Gif-sur-Yvette, Franceen
dc.contributor.authorallDelecluse, P.; IPSL/LSCE, Gif-sur-Yvette, Franceen
dc.contributor.authorallYamagata, T.; Frontier Research System FRCGC, Yokohama, Japanen
dc.date.accessioned2008-04-22T07:51:58Zen
dc.date.available2008-04-22T07:51:58Zen
dc.date.issued2008-04en
dc.identifier.urihttp://hdl.handle.net/2122/3824en
dc.description.abstractThe effect of horizontal resolution on tropical variability is investigated within the modified SINTEX model, SINTEX-F, developed jointly at INGV, IPSL and at the Frontier Research System. The horizontal resolutions T30 and T106 are investigated in terms of the coupling characteristics, frequency and variability of the tropical ocean-atmosphere interactions. It appears that the T106 resolution is generally beneficial even if it does not eliminate all the major systematic errors of the coupled model. There is an excessive shift west of the cold tongue and ENSO variability, and high resolution has also a somewhat negative impact to the variability in the East Indian Ocean. A dominant two-year peak for the NINO3 variabilty in the T30 model is moderated in the T106 as it shifts to longer time scale. At high resolution new processes come into play, as the coupling of tropical instability waves, the resolution of coastal flows at the Pacific Mexican coasts and improved coastal forcing along the coast of South America. The delayed oscillator seems the main mechanism that generates the interannual variability in both models, but the models realize it in different ways. In the T30 model it is confined close to the equator, involving relatively fast equatorial and near-equatorial modes, in the high resolution, it involves a wider latitudinal region and slower waves. It is speculated that the extent of the region that is involved in the interannual variability may be linked to the time scale of the variability itself.en
dc.description.sponsorshipThis research was partially supported by the Italy–USA Cooperation Program of the Italian Ministry of Environment and by the EU projects ENSEMBLES and DYNAMITE.en
dc.language.isoEnglishen
dc.publisher.nameAmerican Meteorological Societyen
dc.relation.ispartofJournal of Climateen
dc.relation.ispartofseries/21 (2008)en
dc.subjectcoupled modelsen
dc.subjecttropical variabilityen
dc.subjectENSO systemen
dc.titleAtmospheric horizontal resolution affects tropical climate variability in coupled modelsen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber730-750en
dc.identifier.URLhttp://ams.allenpress.com/perlserv/?request=res-loc&uri=urn%3Aap%3Apdf%3Adoi%3A10.1175%2F2007JCLI1406.1en
dc.subject.INGV03. Hydrosphere::03.01. General::03.01.03. Global climate modelsen
dc.identifier.doi10.1175/2007JCLI1406.1en
dc.relation.referencesBattisti, D. S., 1988: Dynamics and thermodynamics of a warming event in a coupled tropical atmosphere–ocean model. J. Atmos. Sci., 45, 2889–2919. Bengtsson, L., M. Botzet, and M. Esch, 1995: Hurricane-type vortices in a general circulation model. Tellus, 47A, 175–196. Boville, B., 1991: Sensitivity of simulated climate to model resolution. J. Climate, 4, 469–485. Boyle, J., 1993: Sensitivity of dynamical quantities to horizontal resolution for a climate simulation using the ECMWF (cycle 33) model. J. Climate, 6, 796–815. Brankovic, C., and D. Gregory, 2001: Impact of horizontal resolution on seasonal integrations. Climate Dyn., 18, 123–143. Capotondi, A., A. Wittenberg, and S. Masina, 2006: Spatial and temporal structure of tropical Pacific interannual variability in 20th century coupled simulations. Ocean Modell., 15, 274– 298. Chelton, D. B., 2005: The impact of SST specification on ECMWF surface wind stress fields in the eastern tropical Pacific. J. Climate, 18, 530–550. ——, and Coauthors, 2001: Observations of coupling between surface wind stress and sea surface temperature in the eastern tropical Pacific. J. Climate, 14, 1479–1498. ——, M. Schlax, M. H. Freilich, and R. Milliff, 2004: Satellite measurements reveal persistent small-scale features in ocean winds. Science, 303, 978–983. Dewitte, B., C. Cibot, C. Périgaud, S.-I. An, and L. Terray, 2007: Interaction between near-annual and ENSO modes in a CGCM simulation: Role of the equatorial background mean state. J. Climate, 20, 1035–1052. Duffy, P. B., B. Govindasamy, J. P. Iorio, J. Milovich, K. R. Sperber, K. E. Taylor, M. F. Wehner, and S. L. Thompson, 2003: High-resolution simulations of global climate, part 1: Present climate. Climate Dyn., 21, 371–390. Fedorov, A. V., and S. G. Philander, 2000: Is El Niño changing? Science, 288, 1997–2002. Gualdi, S., A. Navarra, and H. von Storch, 1997: Tropical intraseasonal oscillation appearing in operational analyses and in a family of general circulation models. J. Atmos. Sci., 54, 1185– 1202. ——, E. Guilyardi, P. Delecluse, S. Masina, and A. Navarra, 2003a: The role of the Indian Ocean in a coupled model. Climate Dyn., 20, 567–582. ——, A. Navarra, E. Guilyardi, and P. Delecluse, 2003b: Assessment of the tropical Indo-Pacific climate in the SINTEX CGCM. Ann. Geophys., 46, 1–5. ——, A. Alessandri, and A. Navarra, 2005: Impact of atmospheric horizontal resolution on El Niño Southern Oscillation forecasts. Tellus, 57A, 357–374. Guilyardi, E., P. Delecluse, S. Gualdi, and A. Navarra, 2003: Mechanism for ENSO phase change in a coupled GCM. J. Climate, 16, 1141–1158. ——, and Coauthors, 2004: Representing El Niño in coupled ocean–atmosphere GCMs: The dominant role of the atmospheric component. J. Climate, 17, 4623–4629. Hashizume, H., S.-P. Xie, W. T. Liu, and K. Takeuchi, 2001: Local and remote atmospheric response to tropical instability waves: A global view from space. J. Geophys. Res., 106, 10 173–10 186. Jin, F.-F., 2001: Low-frequency modes of tropical ocean dynamics. J. Climate, 14, 3874–3881. Junge, M. M., R. Blender, K. Fraedrich, V. Gayler, U. Luksch,and F. Lunkeit, 2005: A world without Greenland: Impacts on the Northern Hemisphere winter circulation in low- and high-resolution models. Climate Dyn., 24, 297–307. Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437–471. Kirtman, B., 1997: Oceanic Rossby wave dynamics and the ENSO period in a coupled model. J. Climate, 10, 1690–1704. Kistler, R., and Coauthors, 2001: The NCEP–NCAR 50-Year Reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82, 247–267. Kobayashi, C., and M. Sugi, 2004: Impact of horizontal resolution on the simulation of the Asian summer monsoon and tropical cyclones in the JMA global model. Climate Dyn., 23, 165–176. Liu, W. T., X. Xie, P. S. Polito, S.-P. Xie, and H. Hashizume, 2000: Atmospheric manifestation of tropical instability waves observed by QuikSCAT and Tropical Rain Measuring Mission. Geophys. Res. Lett., 27, 2545–2548. Luo, J.-J., S. Masson, S. Behera, P. Delecluse, S. Gualdi, A. Navarra, and T. Yamagata, 2003: South Pacific origin of the decadal ENSO-like variation as simulated by a coupled GCM. Geophys. Res. Lett., 30, 2250–2258. ——, ——, E. Roeckner, G. Madec, and T. Yamagata, 2005: Reducing climatology bias in an ocean–atmosphere CGCM with improved coupling physics. J. Climate, 18, 2344–2360. Manabe, S., J. Smagorinsky, J. L. Holloway Jr., and H. M. Stone, 1970: Simulated climatology of a general circulation model with a hydrologic cycle. III: Effects of increased horizontal computational resolution. Mon. Wea. Rev., 98, 175–212. Masina, S., N. Pinardi, and A. Navarra, 2001: A global ocean temperature and altimeter data assimilation system for studies of climate variability. Climate Dyn., 17, 687–700. ——, P. Di Pietro, and A. Navarra, 2004: Interannual-to-decadal variability of the North Atlantic from an ocean data assimilation system. Climate Dyn., 23, 531–546. May, W., 2001: The impact of horizontal resolution on the simulation of seasonal climate in the Atlantic/European area for present and future times. Climate Res., 16, 203–223. ——, 2003: The Indian summer monsoon and its sensitivity to the mean SSTs: Simulations with the ECHAM4 AGCM at T106 horizontal resolution. J. Meteor. Soc. Japan, 81, 57–83. ——, and E. Roeckner, 2001: A time-slice experiment with the ECHAM4 AGCM at high resolution: The impact of horizontal resolution on annual mean climate change. Climate Dyn., 17, 407–420. McCreary, J. P., H. S. Lee, and D. B. Enfield, 1989: The response of the coastal ocean to strong offshore winds: With application to circulations in the gulfs of Tehuantepec and Papagayo. J. Mar. Res., 47, 81–109. Navarra, A., 2003: Preface: The SINTEX Project. Ann. Geophys., 46, V–IX. ——, and J. Tribbia, 2005: The coupled manifold. J. Atmos. Sci., 62, 310–330. Pope, V., and R. Stratton, 2002: The processes governing horizontal resolution sensitivity in a climate model. Climate Dyn., 19, 211–236. Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of SST, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670. Roeckner, E., and Coauthors, 1996: The atmospheric general circulation model ECHAM-4: Model description and simulation of present-day climate. Max-Planck-Institut für Meteorologie Rep. 218, 90 pp. Schopf, P., and M. J. Suarez, 1990: Ocean wave dynamics and the time scale of ENSO. J. Phys. Oceanogr., 20, 629–645. Sperber, K., S. Hameed, G. L. Potter, and J. S. Boyle, 1994: Simulation of the northern summer monsoon in the ECMWF model: Sensitivity to horizontal resolution. Mon. Wea. Rev., 122, 2461–2481. Stephenson, D. B., F. Chauvin, and J.-F. Royer, 1998: Simulation of the Asian summer monsoon and its dependence on model horizontal resolution. J. Meteor. Soc. Japan, 76, 237–265. Stratton, R. A., 1999: A high resolution AMIP integration using the Hadley Centre model HadAM2b. Climate Dyn., 15, 9–28. Suarez, M. J., and P. S. Schopf, 1988: A delayed action oscillator for ENSO. J. Atmos. Sci., 45, 3283–3287. Tibaldi, S., T. N. Palmer, C. Brankovic, and U. Cubasch, 1990: Extended-range predictions with ECMWF models: Influence of horizontal resolution on systematic error and forecast skill. Quart. J. Roy. Meteor. Soc., 116, 835–866. Welch, P., 1967: The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust., 15, 70–73. Wild, M., P. Calanca, S. C. Scherrer, and A. Ohmura, 2003: Effects of polar ice sheets on global sea level in high-resolution. J. Geophys. Res., 108, 4165, doi:10.1029/2002JD002451. Williamson, D. L., J. T. Kiehl, and J. J. Hack, 1995: Climate sensitivity of the NCAR Community Climate Model (CCM2) to horizontal resolution. Climate Dyn., 11, 377–397. Wittenberg, A. T., 2004: Extended wind stress analyses for ENSO. J. Climate, 17, 2526–2540.en
dc.description.obiettivoSpecifico3.7. Dinamica del clima e dell'oceanoen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorNavarra, A.en
dc.contributor.authorGualdi, S.en
dc.contributor.authorMasina, S.en
dc.contributor.authorBehera, S.en
dc.contributor.authorLuo, J.-J.en
dc.contributor.authorMasson, S.en
dc.contributor.authorGuilyardi, E.en
dc.contributor.authorDelecluse, P.en
dc.contributor.authorYamagata, T.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.departmentFrontier Research System FRCGC, Yokohama, Japanen
dc.contributor.departmentFrontier Research System FRCGC, Yokohama, Japanen
dc.contributor.departmentFrontier Research System FRCGC, Yokohama, Japanen
dc.contributor.departmentIPSL/LSCE, Gif-sur-Yvette, Franceen
dc.contributor.departmentIPSL/LSCE, Gif-sur-Yvette, Franceen
dc.contributor.departmentFrontier Research System FRCGC, Yokohama, Japanen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptCMCC, Italy-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptFrontier Research Center for Global Change/JAMSTEC-
crisitem.author.deptFrontier Research Center for Global Change/JAMSTEC-
crisitem.author.deptFrontier Research System FRCGC, Yokohama, Japan-
crisitem.author.deptIPSL/LSCE, Gif-sur-Yvette, France-
crisitem.author.deptIPSL/LSCE, Gif-sur-Yvette, France-
crisitem.author.deptFrontier Research System FRCGC, Yokohama, Japan-
crisitem.author.orcid0000-0001-7777-8935-
crisitem.author.orcid0000-0001-6273-7065-
crisitem.author.orcid0000-0001-8692-2388-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent03. Hydrosphere-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Atm_Hor_Res.pdfMain article5.3 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

28
checked on Feb 10, 2021

Page view(s) 50

192
checked on Apr 20, 2024

Download(s)

20
checked on Apr 20, 2024

Google ScholarTM

Check

Altmetric