Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/3806
DC FieldValueLanguage
dc.contributor.authorallLomabardo, V.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.contributor.authorallBuongiorno, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.date.accessioned2008-04-21T06:36:12Zen
dc.date.available2008-04-21T06:36:12Zen
dc.date.issued2006en
dc.identifier.urihttp://hdl.handle.net/2122/3806en
dc.description.abstractInfrared remotely sensed data can be used to estimate heat flux and thermal features of active volcanoes. The model proposed by Crisp and Baloga (1990) for active lava flows considers the thermal flux as a function of the fractional area of two thermally distinct radiant surfaces: the larger surface area corresponds to the cooler crust of the flow, the smaller one to fractures in the crust. In this model, the crust temperature Tc, the cracks temperature Th, and the fractional area of the hottest component fh represent the three unknowns to solve. The simultaneous solution of the Planck equation (“dual-band” technique) for two distinct shortwave infrared (SWIR) bands allows to estimate any two of the parameters Tc, Th, fh, if the third is assumed. The airborne sensor MIVIS was flown on Mount Etna during the July-August 2001 eruption. This hyperspectral imaging spectrometer offers 72 bands in the SWIR range and 10 bands in thermal infrared (TIR) region of the spectrum, which can be used to solve the dual-band system without any assumption. Therefore, we can combine three spectral MIVIS bands to obtain simultaneous solutions for the three unknowns. Here, the procedure for solving such a system is presented. It is then demonstrated that a TIR channel is required to better pinpoint solutions to the 2-components model. Finally, the spatial and statistical characteristic of the resultant MIVIS-derived temperature and flux distributions are introduced and statistics for each hot spot investigated.en
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofRemote Sensing of Environmenten
dc.relation.ispartofseries2/101 (2006)en
dc.subjectMt.Etna, Dual-band, Thermal anomalyen
dc.titleLava flow thermal analysis using three infrared bands of remote-sensing imagery: a study case from Mount Etna 2001 eruptionen
dc.typearticleen
dc.description.statusPublisheden
dc.description.pagenumber141-149en
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoringen
dc.identifier.doi10.1016/j.rse.2005.12.008en
dc.relation.referencesAbramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, p. 14, 1972. Archambault, C., J.C. Tanguy, 1976. Comparative temperature measurements on Mount Etna lavas: problems and thecniques,. Journal of Volcanology and Geothermal Research 1, 113-125. Bogliolo M.P., Teggi S., Buongiorno M.F., Pugnaghi S., 1998. Retrieving ground reflectance from MIVIS data: a case study on Vulcano island (Italy). Proc. of 1st EARSeL Workshop on IMAGING SPECTROSCOPY, Remote Sensing Lab., Univ. of Zurich, Switzerland, 6-8, October 1998, pp. 403-416. Bogliolo M.P., Buongiorno M.F., Salvi S., Teggi S., Pugnaghi S., Abrams M.J., Pieri D.C., Realmuto V.J., Caltabiano, 1996. Ground measurements of physical parameters at Vulcano island and Mount Etna in support of the MIVIS remote sensing campaign "Sicilia-94", Pubblicazione ING 577. Behncke, B., Neri, M.. 2003. The July-August 2001 eruption of Mt. Etna (Sicily). Bull. Of Volcanology, 65, 461-476. Buongiorno M.F., Merucci L., F. Doumaz, Salvi S., Bogliolo M.P, Pugnaghi S., Teggi S., Coradini S., Lumbroso L.,Sterni A. Caltabiano T. and Carrere, 1999. MVRRS Campaign: MIVIS mission on Sicilian volcanoes and ground measurements. Quaderni di Geofisica, Pubblicazione N. 7, 1999, editor: Istituto Nazionale di Geofisica. Calvari S. , Coltelli M., Neri M., Pompilio M, Scribano V., 1994. The 1991-1993 Etna eruption: chronology and geological observations. Acta Vulcanologica V. 4, 1994, 1-14. Crisp, J., Baloga, S., 1990. A model for lava flows with two thermal componets, J. Geophys. Res., 95, 1255-1270. Dozier, J.,1981. A method for satellite identification of surface temperature fields of subpixel resolution. Remote Sensing Environment, 11:221-229. Flynn, L.P., Harris, A.J.L., Wright, R., 2001. Improved identification of volcanic features using Landsat 7 ETM+, Remote Sensing Environment, 78:180-193. Flynn LP, Harris AJL, Rothery DA, Oppenheimer C (2000) High-Spatial resolution thermal remote sensing of active volcanic features using Landsat and hyperspectral data. Remote Sensing of Active Volcanism AGU Geophysical Monograph Series 116: 161-177. Flynn, L.P., Mouginis-Mark, P.J., Horton, K. A., 1994. Distribution of thermal areas on an active lava flow field: Landsat observations of Kilauea, Hawaii, July 1991, Bull. Vucanol. 56, 284-296. Gauthier, F., 1973. Field and laboratory studies of the rheology of Mount Etna lava, Philos. Trans. R. Soc. London, 274, 83-98. Glaze L., Francis, P.W. Rothery, D.A, 1989. Measuring thermal budgets of active volcanoes by satellite remote sensing, Nature, 338: 144-146. Global Volcanism Network (GVN), Etna, Smithson. Inst. Bull. Global Volcan. Network, 06/99 (BGVN 24:06), 1999. Global Volcanism Network (GVN), Etna, Smithson. Inst. Bull. Global Volcan. Network, 07/96 (BGVN 21:07), 1996. Harris, A.J.L., Pilger, E., Flynn, L.P., Garbeil, H., Mouginis-Mark, P.J., Kauahikaua, J., Thornber, C., 2001. Automated, high temporal resolution, thermal analysis of Kilauea volcano, Hawaii, using GOES satellite data, Int. J. Remote sens., 22(6): 945-967. Harris, A.J.L., Murray, J.B., Aries, S.E., Davies, M.A., Flynn, L.P., Wooster, M.J., Wright, R., Rothery, D.A., 2000b. Effusion rate trends at Etna and Krafta and their implications for eruptive mechanisms, Journal of Vulcanology and Geothermal Research 102, 237-269. Harris, A.J.L., Flynn, L.P., Dean, K, Pilger, E, Wooster, M.J., Okubo, C., Mouginis-Mark, P.J., Garbeil, H., Thornbern, C., De la Cruz-Reyna, S., Rothery, D.A., Wright, R., 2000a. Real-time monitoring of volcanic hot-spots with satellites. Remote Sensing of Active Volcanism, AGU Geophysical Monograph Series, 116, 139-159. Harris, A.J.L., Flynn, L.P., Rothery, D.A., Oppenheimer, C., Sherman S.B., 1999. Mass flux measurements at active lava lakes: implications for magma recycling, Journal of Geophysical Research, 104, 7117-7136. Harris, A.J.L., Flynn, L.P., Keszthelyi, L., Mouginis-Mark, P.J., Rowland, S.K., Resing, J.A., 1998. Calculation of lava effusion rates from Landsat TM data, Bull. Vucanol. 60, 52-71. Harris, A.J.L., and Stevenson D.S., 1997. Thermal observations of degassing open conduits and fumaroles at Stromboli and Vulcano using remotely sensed data, Journal of Volcanology and Geothermal Research, 76, 175-198. Harris, A.J.L., Blake, S., Rothery, D.A., 1997. A chronology of the 1991 to 1993 Mount Etna eruption using advanced very high resolution radiometer data: Implication for real-time thermal volcano monitoring, Journal of Geophysical Research, 102, 7985-8003. Harris, A.J.L., 1996. Low spatial resolution thermal monitoring of volcanoes from space. PhD thesis, The Open University. Harris, A.J.L., Rothery, D.A., Carlton, R.W., Langaas, S., Mannstein, H., 1995. Non-zero saturation of AVHRR thermal channels over high temperature targets: Evidence from volcano data and a possible explanation, Int. J. Remote sens., 16(1): 189-196, 1995a. Harris, A.J.L., Swabey, S.E.J., Higgins, J., 1995. Automated thresholding of active lavas using AVHRR data, Int. J. Remote sens., 16(18): 3681-3686, 1995b. Kneizys, F.X., Shettle, E.P., Gallery, W.O., Chetwynd Jr., J.H., Abreu, L.W., Selby, J.E.A., Clugh, S.A., Fenn, R.W., 1983. Atmospheric trasmittance/radiance: Computer code LOWTRAN 6, Environ. Res. Pap., 846, Air Force Geophys. Lab., Hanscom AFB, Mass. Lechi G., 2000. Relazione finale Contratto "Calibrazione radiometrica su 102 canali distribuiti fra le bande del visibile all’infrarosso termico dello scanner aereotrasportato MIVIS del CNR". Politecnico di Milano, Dipartimento I.I.A.R., Sezione Rilevamento. Lombardo V, Buongiorno MF, Merucci L, Pieri DC, (2004) Differences in Landsat TM derived lava flow thermal structure during summit and flank eruption at Mount Etna, Journal of Volcanology and Geothermal research 134/1-2:15-34. Matson, M. Dozier J., 1981. Identification of subresolution high temperature sources using a thermal IR sensor. Photogramm. Eng. Remote Sens., 47(9):1311-1318. Mouginis-Mark PJ, Garbeil H, Flament P (1994) Effects of viewing geometry on AVHRR observation of volcanic thermal anomalies Remote sens. Envir. 48: 51-60. Oppenheimer, C., 1997. Crater lake heat losses estimated using remote sensing. Geophysical Research Lett.. 23, 1793-1796. Oppenheimer, C., Francis, P.W., Rothery, D.A., Carlton, R.W.T., Glaze L., 1993. Infrared image analysis of volcanic thermal features: Làscar Volcano, Chile, 1984-1992, Journal of Geophysical Research 98, 4269-4286. Oppenheimer, C., Rothery, D.A., Pieri, D.C., Abrams, M.J., Carrere, V., 1993. Analysis of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data of volcanic hot spots, Int. J. Remote sens., 14(16): 2919-2934. Oppenheimer, C., 1993. Infrared surveillance of crater lakes using satellite data, Journal of Volcanology and Geothermal Research 55, 117-128. Oppenheimer, C,. 1993. Thermal distributions of hot volcanic surfaces constrained using three infrared bands of remote sensing data, Geophysical research letters, vol.20, no.6, 431-434. Oppenheimer, C., 1991. Lava flow cooling estimated from Landsat Thematic Mapper infrared data: The Lonquimay eruption (Chile, 1989), Journal of Geophysical Research 96, 21865-21878. Pieri, D.C., Buongiorno, M.F., 2001. Systematic summit crater radiance increase as seen in Landsat TM data before the 1991-93 eruption on Mt. Etna. Under review to Journal of Volcanology and Geothermal research. Pieri, D.C., Glaze, L.S., Abrams, M.J., 1990. Thermal radiance observation of an active lava flow during th June 1984 eruption of Mt. Etna, Geology, v.18, 1018-1022. Rothery, D.A., Oppenheimer, C., Bonneville, A., 1995. Infrared thermal monitoring, in Monitoring active volcanoes (ed. B McGuire, CRJ Kilburn & J Murray), UCL Press, 184-216. Rothery, D.A., Francis, P.W., Wood, C.A., 1988. Volcano monitoring using short wavelength infrared data from satellite, J. Geophys. Res., 93, 7993-8008. Taddeucci J., Pompilio M. & Scarlato P. (2002). Monitoring the explosive activity of the July-August 2001 eruption of Mt. Etna (Italy) by ash characterization. Geophys. Res. Lett., 29, 71. doi: 10.1029/2001GL014372. Teggi S., M.P.Bogliolo, M.F.Buongiorno, S.Pugnaghi and Sterni A. (1999). "Evaluation of SO2 emission from Mt. Etna using diurnal and nocturnal MIVIS TIR remotesensing images and radiative transfer models. Jurnal of Geophysical Research Vol 104, NO B9, pp 20,069-20,079, September 10. The research staff of the Istituto Nazionale di Geofisica e Vulcanologia - Sezione di Catania, Italy (2002) - Multidisciplinary approach yelds insight into Mt. Etna eruption. EOS Transactions, American Geophysical Union, 82(52): 653-656. Wan Z., Dozier J., 1989. Land-surface temperature measurement from space: physical principles and inverse modelling, IEEE Transactions on Geoscience and Remote Sensing, 27(3), 268-277. Wooster, M.J., Kaneko, T., Nakada, S., Shimizu, H., 2000. Discimination of lava dome activity styles using satellite-derived thermal structurs, Journal of Vulcanology and Geothermal Research 102, 97-118. Wooster, M.J., Rothery, D.A., 1997a. Time series analysis of effusive volcanic activity using the ERS along track scanning radiometer: The 1995 eruption of Fernandina volcano, Galapagos Island, Remote Sens. Environ.,69 109-117. Wooster, M.J., Rothery, D.A., 1997b. Thermal of Lascar volcano, Chile using infrared data from the along track scanning radiometer: A 1992-1995 time series, Bull. Vucanol. 58, 566-579. Wright R., Flynn, P.F., Harris, A.J.L., 2001. Evolution of lava flow-fields at Mount Etna, 27-28 October 1999, observed by Landsat 7 ETM+, Bull. Vucanol. 63, 1-7. Wright R., Rothery, D.A., Blake, S., Pieri, D.C., 2000. Improved remote sensing estimates of lava flow cooling: a case study of the 1991-1993 Mount Etna eruption, Journal of Geophysical Research, 105, B10, 23,681-23,694.en
dc.description.obiettivoSpecifico1.10. TTC - Telerilevamentoen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorLomabardo, V.en
dc.contributor.authorBuongiorno, F.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.orcid0000-0002-3231-9636-
crisitem.author.orcid0000-0002-6095-6974-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
06022216002221222.pdfMain article458.93 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

35
checked on Feb 10, 2021

Page view(s)

168
checked on Apr 17, 2024

Download(s)

36
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric