Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/3714
DC FieldValueLanguage
dc.contributor.authorallCosta, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallMelnik, O.; Centre for Environmental and Geophysical Flows, Department of Earth Sciences, University of Bristol, Bristol, UKen
dc.contributor.authorallVedeneeva, E.; Institute of Mechanics, Moscow State University, Moscow, Russiaen
dc.date.accessioned2008-04-01T10:17:11Zen
dc.date.available2008-04-01T10:17:11Zen
dc.date.issued2007-12-27en
dc.identifier.urihttp://hdl.handle.net/2122/3714en
dc.description.abstractBecause of strong coupling between viscosity and temperature, the dynamics of magma flows in conduits are drastically controlled by thermal effects due to heat generation by viscous dissipation and loss to the walls by conduction. Here we present analytical solutions and a practical procedure based on an order of magnitude analysis that permits the characterization of the regime and estimation of the main features of the flow. The ranges of validity of analytical and asymptotic solutions were bounded by using results from fully two-dimensional (2-D) numerical solutions of mass, momentum, and energy equations for magma flow inside a cylindrical conduit and the heat conduction in the surrounding host rocks. The results permitted the identification of three regimes: a conductive-heat-loss-dominated regime, an intermediate regime, and a viscous-heating-dominated regime. Some useful analytical parameterizations are proposed for estimating friction in simplified 1-D models. Temperature layering due to heat loss by conduction can lead to local crystal growth and magma solidification whereas heat generated by viscous dissipation can be responsible for crystal resorption and remelting of wall rocksen
dc.language.isoEnglishen
dc.publisher.nameAGUen
dc.relation.ispartofJ. Geophys. Res.en
dc.relation.ispartofseries/ 112 (2007)en
dc.subjectmagma conduiten
dc.subjectthermal budgeten
dc.subjectviscous dissipationen
dc.subjectheat lossen
dc.subjecttemperature-dependent viscosityen
dc.subjectnonlinear effectsen
dc.titleThermal effects during magma ascent in conduitsen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberB12205en
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamicsen
dc.identifier.doi10.1029/2007JB004985en
dc.relation.referencesBatchelor, G. K. (1967), An Introduction to Fluid Dynamics. Cambridge Univ. Press, 887 Cambridge, 615 pp. 888 Bruce, P.M. and H.E. Huppert (1990), Solidification and melting along dykes by the 889 laminar flow of basaltic magma, in: (Ryan, M.P., ed.), Magma Transport and Storage, 890 John Wiley and Sons, Ltd., Chichester, West Sussex, England, p.87-101. 891 Caricchi, L., L. Burlini, P. Ulmer, T. Gerya, M. Vassalli, and P. Papale (2007), Non- 892 Newtonian rheology of crystal-bearing magmas and implications for magma ascent 893 dynamics, submitted to Earth Planet. Sci. Lett. 894 Carey S. and Sigurdsson H. (1989) The intensity of plinian eruptions. Bull. Volcanol. 895 51:28-40 896 Costa, A. (2005), Viscosity of high crystal content melts: dependence on solid 897 fraction, Geophys. Res. Lett., 32, L22308, doi: 10.1029/2005GL024303. Further 898 comments available at http://arxiv.org/abs/physics/0512173. 899 Costa, A., and G. Macedonio (2002), Nonlinear phenomena in fluids with 900 temperature-dependent viscosity: an hysteresis model for magma flow in conduits, 901 Geophys. Res. Lett., 29 (10), 1402, doi:1029/2001GL014493. Costa, A., and G. Macedonio (2003), Viscous heating in fluids 902 with temperature903 dependent viscosity: implications for magma flows, Nonlinear Proc. Geophys., 10, 904 545–555. 905 Costa, A., and G. Macedonio (2005), Viscous heating in fluids with temperature906 dependent viscosity: triggering of secondary flows, J. Fluid Mech., 540, 21–38. 907 Costa, A., O. Melnik, R.S.J. Sparks and B. Voight (2007a), The control of magma 908 flow in dykes on cyclic lava dome extrusion, Geophys. Res. Lett., 34, L02303, 909 doi:1029/2006GL027466. 910 Costa, A., O. Melnik, and R.S.J. Sparks (2007b), Controls of conduit geometry and 911 wallrock elasticity on lava dome, Earth Planet. Sci. Lett., 260, 137-151, doi: 912 10.1016/j.epsl.2007.05.024. 913 Delaney, P.T. and D.D. Pollard (1981), Deformation of host rocks and flow of magma 914 during growth of minette dikes and breccia-bearing intrusions near Ship Rock, New 915 Mexico, U. S. Geological Survey Professional Paper 1202, 61 pp. 916 Delaney, P.T. and D.D. Pollard (1982) Solidification of basaltic magma during flow 917 in a dike, American Journal of Science, 282, 856-885. 918 Esposti Ongaro, T., A. Neri, C. Cavazzoni, G. Erbacci M.V. Salvetti (2006), A 919 parallel multiphase flow code for the 3D simulation of explosive volcanic eruptions, 920 submitted to Parallel Computing. 921 Fialko, Y. A., and A. M. Rubin (1999), Thermal and mechanical aspects of magma 922 emplacement in giant dike swarms, J. Geophys. Res., 104, 23033–23049. 923 Hardee, H.C., and D.W. Larson (1977), Viscous dissipation effects in magma 924 conduits, J. Volcanol. Geotherm. Res., 2, 299-308. Hess, K.U and D.B. Dingwell (1996), Viscosities of hydrous 925 leucogranite melts: A 926 non-Arrhenian model. Am. Mineral., 81, 1297-1300. 927 Hess, K.U B. Cordonnier, Y. Lavallée and D.B. Dingwell (2006), Experimental 928 confirmation of viscous heating effects in calc-alkaline magmas, paper presented at 929 European Geosciences Union General Assembly 2006, Vienna, Austria, 2-7 April. 930 Huppert, H. E., and R. S. J. Sparks (1989), Chilled margins in igneous rocks, Earth 931 Planet. Sci. Lett., 92, 397– 405. 932 Ingersoll, R., and H. Plass (1948), Theory of the Ground Pipe Heat Source for the 933 Heat Pump, Heating, Piping and Air Conditioning, 20, 150–167. 934 Ko, Y.S., and A.S. Lodge (1991), Viscous heating correction for thermally developing 935 flows in slit die viscosimetry, Rheol. Acta, 30, 357–368. 936 Llewellin, E.W. and M. Manga (2005), Bubble suspension rheology and implications 937 for conduit flow, J. Volcanol. Geotherm. Res., 143, 205-217. 938 Lin, P. and Y. Jaluria (1996), Numerical approach to model heat transfer in polymer 939 melts flowing in constricted channels, Numer. Heat Transfer, Part A, 30, 103-123. 940 Lodge, A.S., and Y.S. Ko (1989), Slit die viscosimeter at shear rates up to 5x10-6 s-1: 941 an analytical correction for small viscous heating errors, Rheol. Acta, 28, 464–472. 942 Martel, S. J. (1990), Formation of compound strike-slip fault zones, Mount Abbot 943 quadrangle, California, Journal of Struct. Geol., 12, 869-882. 944 Mastin, L.G. (2005), The controlling effect of viscous dissipation on magma flow in 945 silicic conduits, J. Volcanol. Geotherm. Res., 143, 17-28. 946 Melnik, O. and R.S.J. Sparks (1999), Nonlinear dynamics of lava dome extrusion. 947 Nature, 402, 37-41. 948 Melnik, O. and R.S.J. Sparks (2005), Controls on conduit magma flow dynamics 949 during lava dome building eruptions, J. Geophys. Res., 110(B022),doi:10.1029/2004JB003183. 951 Morini, G. (2006), Scaling Effects for Liquid Flows in Microchannels, Heat Transfer 952 Eng., 27 (4), 64-73. 953 Muzychka, Y.S., and M.M. Yovanovich (2004), Laminar Forced Convection Heat 954 Transfer in the Combined Emtry Region of Non-Circular Ducts, Journal of Heat 955 Transfer, 126, 54–61. 956 Nelson, S.A. (1981), The possible role of thermal feedback in the eruption of 957 siliciceous magmas, J. Volcanol. Geotherm. Res., 11, 127-137. 958 Pearson, J.R.A. (1977), Variable-viscosity flows in channels with high heat 959 generation, J. Fluid Mech., 83, 191–206. 960 Pearson, J.R.A. (1978), Polymer Flows Dominated by High Heat Generation and Low 961 Heat Transfer, Polymer Engineering and Science, 78, 222–229. 962 Petcovic, H. L., and J. D. Dufek (2005), Modeling magma flow and cooling in dikes: 963 Implications for emplacement of Columbia River flood basalts, J. Geophys. Res., 110, 964 B10201, doi:10.1029/2004JB003432. 965 Polacci, M., P. Papale, and M. Rosi (2001), Textural heterogeneities in pumices from 966 the climactic eruption of Mount Pinatubo, 15 June 1991, and implication for magma 967 ascent dynamics, Bull. Volcanol., 63, 83-97. 968 Richardson, S.M. (1983), Injection moulding of thermoplastics: Freezing during 969 mould filling, Rheol. Acta, 22, 223–236. 970 Richardson, S.M. (1986a), Injection moulding of thermoplastics: Freezing of variable971 viscosity fluids. I. Developing flows with very high heat generation, Rheol. Acta, 25, 972 180–190, 973 Richardson, S.M. (1986b), Injection moulding of thermoplastics: Freezing of 974 variable-viscosity fluids. II. Developing flows with very low heat generation, Rheol. Acta, 25, 308–318 976 Rosi, M., P. Landi, M. Polacci, A. Di Muro, and D. Zandomeneghi (2004), Role of 977 conduit shear on ascent of the crystal-rich magma feeding the 800-year-b.p. Plinian 978 eruption of Quilotoa Volcano (Ecuador), Bull. Volcanol., 66 (4), 307-321. 979 Russell, J.K., D. Giordano, and D.B. Dingwell (2003), High-temperature limits on 980 viscosity of non-arrhenian silicate melts, Am. Mineral., 88, 1390–1394. 981 Sahagian, D. (2005), Volcanic eruption mechanisms: Insights from intercomparison 982 of models of conduit processes, J. Volcanol. Geotherm. Res., 143 (1-3), 1-15. 983 Shaw, H.R. (1969), Rheology of basalt in the melting range, J. Petrology, 10, 510– 984 535. 985 Segall, P., and D. D. Pollard (1983), Joint formation in granitic rock of the Sierra 986 Nevada, Geol. Soc. Am. Bull., 94, 563-575. 987 Sieder, E.N., and G.E. Tate (1936), Heat Transfer and Pressure Drop in Liquids in 988 Tubes, Ind. Engng. Chem., 28, 1429–1436. 989 Skul'skiy, O.I., Y.V. Slavnov, and N.V. Shakirov (1999), The hysteresis phenomenon 990 in nonisothermal channel flow of a non-Newtonian liquid, J. Non-Newtonian Fluid. 991 Mech., 81, 17-26. 992 Stasiuk, M.V., C. Jaupart and R.S.J. Sparks (1993), On the variations of flow rate in 993 non-explosive lava eruptions, Earth Planet. Sci. Lett., 114, 505– 516. 994 Sukanek, P.C., and R.L. Laurence (1974), An experimental investigation of viscous 995 heating in some simple shear flow, AIChE J.,20 (3), 474-484. 996 Touloukian, Y.S., W.R. Judd and R.F. Roy (1989), Physical Properties of Rocks and 997 Minerals, Hemisphere Publishing, New York, p. 548. 998 Tuffen H., D.B. Dingwell, and H. Pinkerton (2003), Repeated fracture and healing of 999 silicic magma generate flow banding and earthquakes?, Geology, 31 (12), 1089-1092.Vedeneeva, E. A., O. E. Melnik, A. A. Barmin, and R. S. 1000 J. Sparks (2005), Viscous 1001 dissipation in explosive volcanic flows, Geophys. Res. Lett., 32, L05303, 1002 doi:10.1029/2004GL020954. 1003 Yu, M.Z., F. Peng, X.D. Li, and Z.H. Fang (2004), A simplified model for measuring 1004 thermal properties of deep ground soil, Exp. Heat Transfer, 17, 119–130. 1005 Wadge, G. (1981), The variation of magma discharge during basaltic eruptions, J. 1006 Volcanol. Geotherm. Res., 11, 139-168. 1007 Wichterle, K. (2004), Heat Transfer in temperature-dependent non-Newtonian flow, 1008 Chem. Eng. Process., 43, 1223–1230.en
dc.description.obiettivoSpecifico3.6. Fisica del vulcanismoen
dc.description.journalTypeJCR Journalen
dc.description.fulltextpartially_openen
dc.contributor.authorCosta, A.en
dc.contributor.authorMelnik, O.en
dc.contributor.authorVedeneeva, E.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentCentre for Environmental and Geophysical Flows, Department of Earth Sciences, University of Bristol, Bristol, UKen
dc.contributor.departmentInstitute of Mechanics, Moscow State University, Moscow, Russiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptInst. Mechanics, Moscow State University, Moskow, Russia-
crisitem.author.deptInstitute of Mechanics, Moscow State University, Moscow, Russia-
crisitem.author.orcid0000-0002-4987-6471-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Article.pdf442.39 kBAdobe PDF
CosMelVed-2007.pdf5.89 MBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations

42
checked on Feb 10, 2021

Page view(s) 20

270
checked on Apr 20, 2024

Download(s) 20

347
checked on Apr 20, 2024

Google ScholarTM

Check

Altmetric