Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/3711
DC FieldValueLanguage
dc.contributor.authorallLi, H.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.contributor.authorallMichelini, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.contributor.authorallZhu, L.; Dept. Earth and Atmospheric Science, Saint Louis University, St. Louis, USAen
dc.contributor.authorallBernardi, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.contributor.authorallSpada, M.; Institute of Geophysics, ETH Honggerberg, CH-8093 Zurich, Switzerlanden
dc.date.accessioned2008-04-01T10:15:41Zen
dc.date.available2008-04-01T10:15:41Zen
dc.date.issued2007-12en
dc.identifier.urihttp://hdl.handle.net/2122/3711en
dc.description.abstractIn this paper, we use regional seismic waveforms recorded by the recently-installed Istituto Nazionale di Geofisica e Vulcanologia (INGV) national network and the Mediterranean Very Broadband Seismographic Network (MedNet) stations to develop one-dimensional (1-D) crustal velocity models for the Italian peninsula. About 55,000 P -wave and 35,000 S -wave arrival times from 4,727 events are used to derive average seismic parameters in the crust and uppermost mantle. We define four regions, according to geological constraints and recent travel-time tomography results. Based on the average seismic parameters, we combine broadband seismic waveforms and travel-times of regional phases to model crustal structures for the four regions by applying the genetic algorithm. Our results indicate smooth velocity gradients with depth beneath the Apennines, and a deep Moho beneath the central Alps. Green’s functions from the regionalized 1-D velocity models are used to determine source depths and focal mechanisms for 37 events with magnitude larger than 3.5 by a grid search technique. Our results show that normal and strike-slip faulting source mechanisms dominate the Apenninic belt and most thrust faulting events occur in the Adriatic sea and the outer margin of the northern Apennines.en
dc.language.isoEnglishen
dc.publisher.nameSeismological Society of Americaen
dc.relation.ispartofBulletin of the Seismological Society of Americaen
dc.relation.ispartofseries6 / 97 (2007)en
dc.subjectvelocity structureen
dc.subjectGreen's functionsen
dc.subjectfocal mechanismen
dc.titleCrustal Velocity Structure in Italy from Analysis of Regional Seismic Waveformsen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber2024–2039en
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropyen
dc.identifier.doi10.1785/0120070071en
dc.relation.referencesAmato, A., B. Alessandrini, and G. B. Cimini (1993), Teleseismic wave tomography of Italy, in Seismic Tomography: Theory and Practice, pp. 361–396, eds Iyer, H. M., H. Hirahara, Chapman and Hall, London. Amato, A., L. Margheriti, R. Azzara, A. Basili, C. Chiarabba, M. G. Ciaccio, G. B. Cimini, M. Di Bona, A. Frepoli, F. P. Lucente, C. Nostro, and G. Selvaggi (1998), Passive seismology and deep structure in central Italy, Pure Appl. Geophys. 151, 479–493. Alessandrini, B., L. Beranzoli, and F. M. Mele (1995), 3-D crustal P-wave velocity tomography of the Italian region using local and regional seismicity data, Ann. Geofis. 38, 189–211. Barchi, M. R., G. Minelli, and G. Pialli (1998), The CROP 03 profile: a synthesis of results on deep structures of the northern Apennines, Mem. Soc. Geol. Ital. 52, 383–400. Bhattacharyya, J., A. F. Sheehan, K. Tiampo, and J. Rundle (1999), Using a genetic algorithm to model broadband regional waveforms for crustal structure in the western United States, Bull. Seism. Soc. Am. 89, 202–214. Billings, S., B. Kennett, and M. Sambridge (1994), Hypocenter location: genetic algorithms incorporating problem specific information, Geophys. J. Int. 118, 693–706. Chang, S.-J., C.-E. Baag, and C. A. Langston (2004), Joint analysis of teleseismic receiver functions and surface wave dispersion using the genetic algorithm, Bull. Seism. Soc. Am. 94, 691–704. Chang, S.-J., and C.-E. Baag (2006), crustal structure in Southern Korea from joint analysis of regional broadband waveforms and travel times, Bull. Seism. Soc. Am. 96, 856–870. Chiarabba, C., and A. Amato (1996), Crustal velocity structure of the Apennines (Italy) from P-wave travel time tomography, Ann. Geofis. 39, 1133–1148. Chiarabba, C., and A. Frepoli (1997), Minimum 1D velocity models in central and southern Italy: a contribution to better constrain hypocentral determinations, Ann. Geofis. 40, 937–954. Chiarabba, C., L. Jovane, and R. DiStefano (2005), A new view of Italian seismicity using 20 years of instrumental recordings, Tectonophysics 395, 251–268. Dewey, J. F., M. L. Helman, E. Turco, D. W. H. Hutton, and S. P. Knott (1989), Kinematics of the western Mediterranean, in Alpine Tectonics, eds Coward, M. P., D. Dietrich, and R. G. Park, Geol. Soc. Lond. Spec. Publ. 45, 265–283. Di Stefano, R., C. Chiarabba, F. Lucente, and A. Amato (1999), Crustal and uppermost mantle structure in Italy from the inversion of P-wave arrival times: geodynamic implications, Geophys. J. Int. 139, 483–498. Di Stefano, R., E. Kissling, C. Chiarabba, A. Amato, and D. Giardini (2006), Shallow subduction beneath Italy: three-dimensional images of the Adriatic-European Tyrrhenian lithosphere system with automatically detected high quality P-wave arrival times, submitted to J. Geophys. Res., 2006. Dreger, D. S., and D. V. Helmberger (1990), Broadband modeling of local earthquakes, Bull. Seism. Soc. Am. 80, 1162–1179. Dreger, D. S., and D. V. Helmberger (1993), Determination of source parameters at regional distances with single station or sparse network data, J. Geophys. Res. 98, 8107–8125. Du, Z. J., and G. F.Panza (1999), Amplitude and phase differentiation of synthetic seismograms: a must for waveform inversion at regional scale, Geophys. J. Int. 136, 83–98. Ekstr¨om, G., A. Morelli, E. Boschi, A. M. Dziewonski (1998), Moment tensor analysis of the central Italy earthquake sequence of September-October 1997, Geophys. Res. Lett. 25, 1971–1974. Goldberg, D. E. (1989), Genetic Algorithm in Search Optimization and Machine Learning, Addison-Wesley, MA. Gualtieri, L., and R. Cassinis (1998), The deep structure of the Northern Apennines imaged by ray tracing depth migration of Near Vertical seismic data, Mem. Soc. Geol. Ital. 52, 163–173. Gualtieri, L., R. De Franco, and A. Mazzotti (1998), A velocity model along the CROP 03 profile derived from expanding spread experiments, Mem. Soc. Geol. Ital. 52, 139–152. Gvirtzman, Z. and A. Nur (2001), Residual topography, lithospheric structure and sunken slabs in the central Mediterranean, Earth Planet. Sci. Lett. 187, 117–130. Hirn, A., and M. Sapin (1997), Crustal structure beneath Corsica, Boll. Geofis. Teor. Appl. 75–76, 233–235. Holland, J. H. (1975), Adaptation in Natural and Artificial System: An Introduction with Application to Biology, Control and Artificial Intelligence, University of Michigan Press, Ann Arbor, MI. Improta, L., G. Iannacone, P. Capuano, A. Zollo, and P. Scandone (2000), Inferences on the upper crustal structure of Southern Appennines (Italy) from seismic refraction investigations and subsurface data, Tectonophysics 317, 273–297. Jolivet, L., and C. Faccenna (2000), Mediterranean extension and the African-Eurasia collision, Tectonics 19, 1095–1107. Kennett, B. L. N., and M. S. Sambridge (1992), Earthquake location–genetic algorithms for teleseisms, Phys. Earth Planet. Inter. 75, 103–110. Kim, W., I.-K. Hahm, S. J. Ahn, and D. H. Lim (2006), Determining hypocentral parameters for local earthquakes in 1-D using a genetic algorithm, Geophys. J. Int. 166, 590–600. Kobayashi, R., and I. Nakanishi (1994), Application of genetic algorithms to focal mechanism determination, Geophys. Res. Lett. 21, 590–600. Kummerow, J., R. Kind, O. Oncken, P. Giese, T. Ryberg, K. Wylegalla, F. Scherbaum, and TRANSALP Working Group (2004), A natural and controlled source seismic profile through the Eastern Alps: TRANSALP, Earth Planet. Sci. Lett. 225, 115–129 Louis, S. J., Q. Chen, and S. Pullammanappallil, Seismic velocity inversion with genetic algorithms, CEC99, 1999 Congress on Evolutionary Computation, Mayflower Hotel, Washington D.C., 855–861. Malinverno, A., and W. B. F. Ryan (1986), Extension in the Tyrrhenian Sea and shortening in the Apennines as a result of arc migration driven by sinking of the lithosphere, Tectonics 5, 227–245. Margheriti, L., F. P. Lucente, and S. Pondrelli (2003), SKS splitting measurements in the Apenninic-Tyrrhenian domain Italy and their relation with lithospheric subduction and mantl convection, J. Geophys. Res. 108(B4), 2218, doi: 10.1029/2002JB001793. Mele, G., A. Rovelli, D. Seber, T. Hearn, and M. Barazangi (1998), Compressional velocity structure and anisotropy in the uppermost mantle beneath Italy and the surrounding regions, J. Geophys. Res. 103(B6), 12,529–12,543. Mele, G., and E. Sandvol (2003), Deep crustal roots beneath the northern Apennines inferred from teleseismic receiver functions, Earth Planet. Sci. Lett. 211, 69–78. Montone, P., A. Amato, and S. Pondrelli (1999), Active stress map of Italy, J. Geophys. Res. 104, 25,595–25,610. Moya, A., J. Aguirre, and K. Irikura (2000), Inversion of source parameters and site effects from strong ground motion records using genetic algorithms, Bull. Seism. Soc. Am. 90, 977–992. Patacca, E., and P. Scandone (1989), The role of the passive sinking of a relic lithospheric slab, in The Lithosphere in Italy, pp. 157–176, eds Boriani, A., M. Bonafede, P. G. Piccardo, and G. B. Vai, Academia Nazionale dei Lincei, Rome. Patacca, E., R. Sartori, and P. Scandone (1990), Tyrrhenian Basin and Apenninic Arcs: kinematic relations since Late Tortonian times, Mem. Soc. Geol. Ital. 45, 425–451. Paul, A., M. Cattaneo, F. Thouvenot, D. Spallarossa, N. B´ethoux, and J. Fr´echet (2001), A three-dimensional crustal velocity model of the southerwestern Alps from local earthquake tomography, J. Geophys. Res. 106(B9), 19,367–19,389. Piromallo, C., and A. Morelli (1997), Imaging the Mediterranean upper mantle by P-wave travel time tomography, Ann. Geofis. 40, 963–979. Piromallo, C., and A. Morelli (2003), P-wave tomography of the mantle under the Alpine-Mediterranean area, J. Geophys. Res. 108(B2), 757, doi:10.1029/2002JB001. Pondrelli, S., S. Salimbeni, G. Ekstr¨om, A. Morelli, P. Gasperini and G. Vannucci (2006), The Italian CMT dataset from 1977 to the present, Phys. Earth Planet. Inter. 159, 286-303, doi:10.1016/j.pepi.2006.07.008. Pontevivo, A., and G. Panza (2002), Group velocity tomography and regionalization in Italy and bordering areas, Phys. Earth Planet. Inter. 134, 1–15. Ponziani, F., R. De Franco, G. Minelli, G. Biella, C. Federico, and G. Pialli (1995), Crustal shortening and duplication of the Moho in the Northern Apennines: view from seismic refraction data, Tectonophysics 252, 391–419. Rodgers, A. J., and S. Y. Schwartz (1998), Lithospheric structure of the Qiangtang Terrane, northern Tibetan Plateau, from complete regional waveform modeling: evidence for partial melt, J. Geophys. Res. 103, 7137–7152. Scarascia, S., A. Lozej, and R. Cassinis (1994), Crustal structures of the Ligurian, Tyrrhenian and Ionian seas and adjacent onshore areas interpreted from wide-angle seismic profiles, Boll. Geofis. Teor. Appl. 36, 5–19. Scarascia, S., and R. Cassinis (1997), Crustal structures in the central-eastern Alpine sector: A revision of the available DSS data, Tectonophysics 271, 157–188. Scognamiglio, L., E. Tinti, and A. Michelini (in preparation), Real-time regional moment tensor estimation using the Italian broadband network, in preparation. Selvaggi, G., and C. Chiarabba (1995), Seismicity and P-wave velocity image of the southern Tyrrhenian subduction zone, Geophys. J. Int. 121, 818–826. Song, X. J., D. V. Helmberger, and L. Zhao (1996), Broadband modeling of regional seismograms: The Basin and Range crustal structure, Geophys. J. Int. 125, 15–29. Spakman, W., S. van der Lee, and R. van der Hilst (1993), Travel-time tomography of the European-Mediterranean mantle down to 1400 km, Phys. Earth Planet Inter. 79, 3–74. Tan, Y., L. Zhu, D. V. Helmberger, and C. K. Saikia (2006), Locating and modeling regional earthquakes with two stations, J. Geophys. J. Res. 111, B01306, doi:10.1029/2005JB003775. Waldhauseret, F., E. Kissling, J. Ansorge, and S. Mueller (1998), Three-dimensional interface modeling with two-dimensional seismic data: the Alpine crust-mantle boundary, Geophys. J. Int. 135, 264–278. Waldhauser, F., R. Lippotsch, E. Kissling, and J. Ansorge (2002), High-resolution teleseismic tomography of upper-mantle structure using an a priori threedimensional crustal model, Geophys. J. Int. 150, 403–414. Westaway, R. (1990), Present-day kinematics of the plate boundary zone between African and Europe, from the Azores to the Aegean, Earth Planet. Sci. Lett. 96, 393–406. Westaway, R. (1992), Seismic moment summation for historical earthquakes in Italy: tectonic implications, J. Geophys. Res. 97, 15,437–15,464. Zeng Y., and J. G. Anderson (1996), a composite source model of the 1994 Northridge earthquake using genetic algorithm, Bull. Seism. Soc. Am. 86, S71–S83. Zhao, L. S., and D. V. Helmberger (1994), Source estimation from broadband regional seismograms, Bull. Seism. Soc. Am. 84, 91–104. Zhou, R., F. Tajima, and P. L. Stoffa (1995), Application of genetic algorithms to constrain near-source velocity structure for the 1989 Sichuan earthquakes, Bull. Seism. Soc. Am. 85, 590–605. Zhu, L., and D. V. Helmberger (1996), Advancement in source estimation techniques using broadband regional seismograms, Bull. Seism. Soc. Am. 86, 1634–1641. Zhu, L., and L. A. Rivera (2002), A note on the dynamic and static displacements from a point source in multi-layered media, Geophys. J. Int. 148, 619–627. Zhu, L., Y. Tan, D. V. Helmberger, and C. K. Saikia (2006), Calibration of the Tibetan Plateau using regional seismic waveforms, Pure Appl. Geophys. 163, 1193–6213.en
dc.description.obiettivoSpecifico3.3. Geodinamica e struttura dell'interno della Terraen
dc.description.journalTypeJCR Journalen
dc.description.fulltextpartially_openen
dc.contributor.authorLi, H.en
dc.contributor.authorMichelini, A.en
dc.contributor.authorZhu, L.en
dc.contributor.authorBernardi, F.en
dc.contributor.authorSpada, M.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
dc.contributor.departmentDept. Earth and Atmospheric Science, Saint Louis University, St. Louis, USAen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
dc.contributor.departmentInstitute of Geophysics, ETH Honggerberg, CH-8093 Zurich, Switzerlanden
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptSchool of Geophysics and Information Technology, China University of Geosciences (Beijing)-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptInstitute of Geophysics, ETH Honggerberg, CH-8093 Zurich, Switzerland-
crisitem.author.orcid0000-0001-6716-8551-
crisitem.author.orcid0000-0002-0414-8411-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
ARTICLE.pdf3.16 MBAdobe PDF
ppgji.pdf5.97 MBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations 50

25
checked on Feb 10, 2021

Page view(s)

218
checked on Mar 27, 2024

Download(s) 10

804
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric