Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/3702
DC FieldValueLanguage
dc.contributor.authorallPiromallo, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallGasperini, D.; Dipartimento di Scienze della Terra, Universita' di Pisa, Pisa, Italyen
dc.contributor.authorallMacera, P.; Dipartimento di Scienze della Terra, Universita' di Pisa, Pisa, Italyen
dc.contributor.authorallFaccenna, C.; Dipartimento di Scienze Geologiche, Università di Roma 3, Rome, Italyen
dc.date.accessioned2008-03-25T10:11:23Zen
dc.date.available2008-03-25T10:11:23Zen
dc.date.issued2008-01-10en
dc.identifier.urihttp://hdl.handle.net/2122/3702en
dc.description.abstractOne of the most challenging issues about the Tertiary–Quaternary alkaline magmatism spreading across the Euro-Mediterranean region is the assessment of both the nature of its mantle source and the mechanism responsible for the common HIMU-like (High μ=high 238U/204Pb) character of erupted lavas, enduring over about 100 million years in diverse tectonic environments. In this paper we try to reconcile geochemical and geophysical data through a multidisciplinary investigation on geochemistry, timing and locations of the main Na-rich alkaline volcanic centers, seismic tomographic images and plate kinematics. We propose that the common component of the Euro-Mediterranean mantle derives from a contamination episode triggered by the rise of the Central Atlantic Plume (CAP) head. Plate reconstruction shows that at late Cretaceous- Paleocene time the oldest magmatic centers of the Euro-Mediterranean region were located more than 2000 km SW of their present day position, in proximity of the CAP hot spot location, where seismic tomography detects a broad low seismic velocity region in the lower mantle. The northeastward migration of the Eurasian and African plates could have involved also part of the CAP contaminated mantle, which moved in the same direction being coupled to the lithospheric plates, thus explaining the presence of geochemically-uniform material spread in the sub-lithospheric Euro-Mediterranean mantle. During the Tertiary, regional-scale convection and related processes such as rifting, back-arc spreading, slab detachment/windows, may have favored upwelling and partial melting of the frayed plume head material via adiabatic decompression, shaping the spatial and temporal distribution of HIMU-like volcanics. The growing supply of subducted lithosphere may explain as well the increase of crustal isotopic signatures of alkaline magmas with time. In our opinion, the Euro-Mediterranean upper mantle contamination can be eventually related to a global event occurred during the Cretaceous as a consequence of a mantle avalanche caused by the Tethys closure.en
dc.description.sponsorshipMIUR 2005-2007, prot. n. 2005055415_002, Poli G.en
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofEarth and Planetary Science Lettersen
dc.relation.ispartofseries1-2 / 268 (2008)en
dc.subjectCenozoic HIMU–OIB volcanismen
dc.subjectEuro-Mediterranean mantleen
dc.subjectgeochemistryen
dc.subjectmantle tomographyen
dc.subjectplate kinematicsen
dc.titleA late Cretaceous contamination episode of the European–Mediterranean mantleen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber15–27en
dc.identifier.URLhttp://www.sciencedirect.com/science/journal/0012821Xen
dc.subject.INGV04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamicsen
dc.identifier.doi10.1016/j.epsl.2007.12.019en
dc.relation.referencesAbbott, D.H., Isley, A.E., 2002. The intensity, occurrence, and duration of superplume events and eras over geological time. J. Geodyn. 34, 265–307. Aldanmaz, E., Pearce, J.A., Thirwall, M.F., Mitchell, J.G., 2000. Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey. J. Volcanol. Geotherm. Res. 102, 67–95. Barth, A., Jordan, M., Ritter, J.R.R., 2007. Crustal and upper mantle structure of the French Massif Central plume. In: Ritter, J.R.R., Christensen, U.R. (Eds.), Mantle Plumes -AMultidisciplinary Approach. SpringerVerlag, Heidelberg, pp. 159–184. Becker, T.W., Boschi, L., 2002. A comparison of tomographic and geodynamic mantle models. Geochem. Geophys. Geosyst. 3 (1), 1003. doi:10.1029/ 2001GC000168. Behn, M.D., Conrad, C.P., Silver, P.G., 2004. Detection of upper mantle flow associatedwith theAfrican Superplume. Earth Planet. Sci. Lett. 224, 259–274. Bell, K., Castorina, F., Lavecchia, G., Rosatelli, G., Stoppa, F., 2004. Is there a mantle plume below Italy? EOS 85, 541–547. Boschi, L., Becker, T.W., Steinberger, B., 2007. Mantle plumes: dynamic models and seismic images. Geochem. Geophys. Geosyst. 8, Q10006. doi:10.1029/2007GC001733. Cadoux, A., Blichert-Toft, J., Pinti, D.L., Albarède, F., 2007. A unique lower mantle source for Southern Italy volcanics. Earth Planet. Sci. Lett. 259, 227–238. doi:10.1016/j.epsl.2007.04.001. Carminati, E.,Wortel, M.J.R., Spakman,W., Sabadini, R., 1998. The role of slab detachment processes in the opening of the western-central Mediterranean basins: some geological and geophysical evidence. Earth Planet. Sci. Lett. 160, 651–665. Cebria, J.M., Lopez-Ruiz, J., 1995. Alkali basalts and leucitites in an extensional intracontinental plate setting: the late Cenozoic Calatrava Volcanic Province (central Spain). Lithos 35, 27–46. Cebria, J.M., Wilson, M., 1995. Cenozoic mafic magmatism in Western/Central Europe: a common European astenospheric reservoir. Terra Nova 7, 162 abstract Suppl. Cebria, J.M., Lopez-Ruiz, J., Doblas, M., Oyarzun, R., Hertogen, J., Benito, R., 2000. Geochemistry of the Quaternary alkali basalts of Garrotxa (NE Volcanic Province, Spain): a case of double enrichment of the mantle lithosphere. J. Volcanol. Geotherm. Res. 102, 217–235. Cebria, J.M., Lopez-Ruiz, J.,Wilson, M., 2006. Towards a coherent geodynamic model for Cenozoic European volcanism, paper presented at 1st Plume Workshop. Mt St. Odile, France. 3-6th July. Conrad, C.P., Lithgow-Bertelloni, C., 2002. How mantle slabs drive plate tectonics. Science 298, 207–209. Conrad, C.P., Gurnis, M., 2003. Seismic tomography, surface uplift, and the breakup of Gondwanaland: integrating mantle convection backwards in time. Geochem. Geophys. Geosyst. 4 (3), 1031. doi:10.1029/2001GC000299. Corti, G., Bonini, M., Innocenti, F., Manetti, P., Piccardo, G.B., Ranalli, G., 2007. Experimental models of extension of continental lithosphere weakened by percolation of asthenospheric melts. J. Geodyn. 43, 465–483. Coulon, C., Megartsi, M., Fourcade, S., Maury, R.C., Bellon, H., Louni-Hacini, A., Cotten, J., Coutelle, A., Hermitte, D., 2002. Post-collisional transition from calc-alkaline to alcaline volcanism during the Neogene in Oranie (Algeria): magmatic expression of a slab breakoff. Lithos 62, 87–110. Courtillot, V., Davaille, A., Besse, J., Stock, J., 2003. Three distinct types of hotspots in the Earth's mantle. Earth Planet. Sci. Lett. 205, 295–308. Dal Piaz, G.V., Venturelli, G., 1983. Brevi riflessioni sul magmatismo postofiolitico nel quadro dell’evoluzione spazio-temporale delle Alpi. Mem. Soc. Geol. Ital. 26, 5–19. Davaille, A., Stutzmann, E., Silveira, G., Besse, J., Courtillot, V., 2005. Convective pattern in the Indo-Atlantic box. Earth Planet. Sci. Lett. 239, 233–252. Dobosi, G., Fodor, R.V., Goldberg, S.A., 1995. Late-Cenozoic alkalic basalt magmatism in northern Hungary and Slovakia: petrology, source compositions and relationship to tectonics. Acta Vulcanol. 7 (2), 199–207. Downes, H., Pantò, G., Poka, T., Mattey, D.P., Greenwood, P.B., 1995a. Calcalkaline volcanics of the inner Carpathian arc, Northern Hungary: new geochemical and oxygen isotopic results. Acta Vulcanol. 7 (2), 29–41. Downes, H., Vaselli, O., Seghedi, I., Ingram, G., Rex, D., Coradossi, N., Pecskay, Z., Pinarelli, L., 1995b. Geochemistry of late Cretaceous–early Tertiary magmatism in Poiana Rusca (Romania). Acta Vulcanol. 7 (2), 209–217. El Bakkali, S., Gourgaud, A., Bourdier, J.L., Bellon, H., Gundogdu, N., 1998. Post-collision neogene volcanism of the Eastern Rift (Morocco): magmatic evolution through time. Lithos 45, 523–543. Faccenna, C., Jolivet, L., Piromallo, C., Morelli, A., 2003. Subduction and the depth of convection in the Mediterranean mantle. J. Geophys Res. 108 (B2), 2099. doi:10.1029/2001JB001690. Faccenna, C., Piromallo, C., Crespo-Blanc, A., Jolivet, L., Rossetti, F., 2004. Lateral slab deformation and the origin of the western Mediterranean arcs. Tectonics 23, TC1012. doi:10.1029/2002TC001488. Faccenna, C., Civetta, L., D’Antonio, M., Funiciello, F., Margheriti, L., Piromallo, C., 2005. Constraints on mantle circulation around the deforming Calabrian slab. Geophys. Res. Lett. 32, L06311. doi:10.1029/ 2004GL021874. Farnetani, C.G., Samuel, H., 2005. Beyond the thermal plume paradigm. Geophys. Res. Lett. 32. doi:10.1029/2004g1021874. Gasperini, D., Blichert-Toft, J., Bosch, D., Del Moro, A., Macera, P., Albarède, F., 2002. Upwelling of deep mantle material through a plate window: evidence from the geochemistry of Italian basaltic volcanics. J. Geophys Res. 107 (B12), 2367. doi:10.1029/2001JB000418. Gasperini, D., Maffei, K., Piromallo, C., Macera, P., Faccenna, C., Martin, S., Ranalli, G., 2003. Where is the tail of the European plume volcanism? paper presented at EGS-AGU-EUG Joint Assembly, Nice, France, 6-11 April. Geldmacher, J., Hoernle, K., v.d. Bogaard, P., Duggen, S., Werner, R., 2005. New 40Ar/39Ar age and geochemical data from seamounts in the Canary and Madeira Volcanic Provinces: support for the mantle plume hypothesis. Earth Planet. Sci. Lett. 237, 85–101. Goes, S., Spakman, W., Bijwaard, H., 1999. A lower mantle source for central European volcanism. Science 286, 1928–1931. Goldstein, S.J., Jacobsen, S.B., 1988. Nd and Sr isotopic systematics of river water suspended material: implications for crustal evolution. Earth Planet. Sci. Lett. 87 (3), 249–265. Gordon, R.G., Jurdy, D.M., 1986. Cenozoic global plate motion. J. Geophys. Res. 91, 12,389–12,406. Granet, M.,Wilson, M., Achauer, U., 1995. Imaging a mantle plume beneath the Massif Central (France). Earth Planet. Sci. Lett. 136, 281–296. Greenough, J.D., Hodych, J.P., 1990. Evidence for lateral magma injection in the early Mesozoic dykes of eastern North America. In: Parker, A.J. (Ed.), Mafic dykes and emplacement mechanisms. Balkema, Rotterdam, Netherlands, pp. 35–46. Hames, W.E., Renne, P.R., Ruppel, C., 2000. New evidence for geologically instantaneous emplacement of earliest Jurassic Central Atlantic magmatic province basalts on the North America margin. Geology 28 (9), 859–862. Hanan, B.B., Graham, D.W., 1996. Lead and helium isotope evidence from oceanic basalts for a common deep source of mantle plumes. Science 272, 991–995. Harangi, S., 2001. Neogene to Quaternary Volcanism of the Carpathian– Pannonian Region — a review. Acta Geol. Hung. 44 (2-3), 223–258. Harangi, S., Tonarini, S., Vaselli, O., Manetti, P., 2003. Geochemistry and petrogenesis of Early Cretaceous alkaline igneous rocks in Central Europe: implications for a long-lived EAR-type mantle component beneath Europe. Acta Geol. Hung. 46, 77–94. Hoernle, K., Zhang, Y.S., Graham, D., 1995. Seismic and geochemical evidence for large-scale mantle upwelling beneath the eastern Atlantic and western and central Europe. Nature 374, 34–39. Jung, S., Hoernes, S., 2000. The major-and trace-element and isotope (Sr, Nd, O) geochemistry of Cenozoic alkaline rift-type volcanic rocks from the Rhon area (Central Germany): petrology, mantle source characteristics and implications for asthenosphere-lithosphere interactions. J. Volcanol. Geotherm. Res. 99, 27–53. Jurine, D., Jaupart, C., Brandeis, G., Tackley, P.J., 2005. Plume penetration through depleted lithosphere. J.Geophys.Res. 110, B10104. doi:10.1029/2005JB003751. Kárason, H., van der Hilst, R.D., 2001. Tomographic imaging of the lowermost mantle with differential times of refracted and diffracted core phases (PKP, Pdiff). J. Geophys. Res. 106 (B4), 6569–6588. Kerr, R.C., Mèriaux, C., 2004. Structure and dynamics of sheared mantle plumes. Geochem. Geophys. Geosyst. 5, Q12009. doi:10.1029/2004GC000749. Keyser, M., Ritter, J.R.R., Jordan, M., 2002. 3D shear-wave velocity structure of the Eifel plume, Germany. Earth Planet. Sci. Lett. 203, 59–82. King, S.D., Anderson, D.L., 1998. Edge-driven convection. Earth Planet. Sci. Lett. 160, 289–296. King, S.D., Ritsema, J., 2000. African hot spot volcanism: small-scale convection in the upper mantle beneath cratons. Science 290, 1137–1140. doi:10.1126/science.290.5494.1137. Klerkx, J., Deutsch, S., De Paepe, P., 1974. Rubidium, strontium content and strontium isotopic composition of strongly alkalic basaltic rocks from the Cape Verde Islands. Contrib. Mineral. Petrol. 45, 107–118. Lithgow-Bertelloni, C., Richards, M.A., 1998. The dynamics of Cenozoic and Mesozoic plate motions. Rev. Geophys. 36, 27–78. Lustrino, M., Wilson, M., 2007. The circum-Mediterranean anorogenic Cenozoic igneous province. Earth Sci. Rev. doi:10.1016/j.earscirev.2006.09.002. Macera, P., Gasperini, D., Piromallo, C., Blichert-Toft, J., Bosch, D., Del Moro, A., Martin, S., 2003. Geodynamic implications of deep mantle upwelling in the source of Tertiary volcanics from the Veneto region (South-Eastern Alps). J. Geodyn. 36, 563–590. Macera, P., Gasperini, D., Piromallo, C., Funiciello, F., Faccenna, C., Ranalli, G., 2004. Recent hot spot volcanism in the European and Mediterranea area. paper presented at 32nd IGC, Florence, Italy, 20-28 August. Abstract 291-2. Macera, P., Gasperini, D., Ranalli, G., Mahatsente, R., 2008. Slab detachment and mantle plume upwelling in subduction zones: an example from the Italian southeastern Alps volcanism. J. Geodyn 45, 32–48. doi:10.1016/j.jog.2007.03.004. Machetel, P., Humler, E., 2003. High mantle temperature during Cretaceous avalanche. Earth Planet. Sci. Lett. 208, 125–133. Marzoli, A., Renne, P.R., Piccirillo, E.M., Ernesto, M., Bellini, G., De Min, A., 1999. Estensive 200-million-years-old continental flood basalts of the Central Atlantic Magmatic Province. Science 284 (5414), 616–618. McDonough, W.F., Sun, S.S., 1995. Composition of the Earth. Chem. Geol. 120, 223–253. Meibom, A., Anderson, D.L., 2004. The statistical upper mantle assemblage. Earth Planet. Sci. Lett. 217, 123–139. Montelli, R., Nolet, G., Dahlen, F.A., Masters, G., Engdahl, E.R., Hung, S.-H., 2004. Finite-frequency tomography reveals a variety of plumes in the mantle. Science 303, 338–343. doi:10.1126/science.1092485. Moore,W.B., Schubert, G., Tackley, P.J., 1998. Three-dimensional simulations of plume-lithosphere interaction at theHawaiian Swell. Science 279, 1008–1011. Oyarzun, R., Doblas, M., Lòpez-Ruiz, J., Cebrià, J.M., 1997. Opening of the centralAtlantic and asymmetricmantle upwelling phenomena: implications for long-lived magmatism in western North Africa and Europe. Geology 25 (8), 720–730. Peccerillo, A., Lustrino, M., 2005. Compositional variations of Plio-Quaternary magmatism in the circum-Tyrrhenian area: Deep versus shallow mantle processes. In: Foolger, G.R., Natland, J.H., Presnall, D.C., Anderson, D.L. (Eds.), Plates, plumes, and paradigms. Geol. Soc. Am., 388, pp. 421–434. doi:10.1130/2005.2388(25). Special paper. Piromallo, C., Morelli, A., 2003. P-wave tomography of the mantle under the Alpine-Mediterranean area. J. Geophys. Res. 108 (B2). doi:10.1029/ 2002JB001757. Piromallo, C., Faccenna, C., 2004. How deep can we find the traces of Alpine subduction? Geophys. Res. Lett. 31. doi:10.1029/2003GL019288. Piromallo, C., Vincent, A.P., Yuen, D.A., Morelli, A., 2001. Dynamics of the transition zone under Europe inferred from wavelet cross-spectra of seismic tomography. Phys. Earth Planet. Inter. 125, 125–139. Rehkamper, M., Hofmann, A.W., 1997. Recycled ocean crust and sediment in Indian Ocean MORB. Earth Planet.Sci. Lett. 147 (1-4), 93–106. Ritsema, J., van Heijst, H.J., Woodhouse, J.H., 1999. Complex shear wave velocity structure imaged beneath Africa and Iceland. Science 286, 1925–1928. Ritter, J.R.R., Jordan, M., Christensen, U.R., Achauer, U., 2001. A mantle plume below the Eifel volcanic fields, Germany. Earth Planet. Sci. Lett. 186, 7–14. Rosembaum, J.M., Wilson, M., Downes, H., 1997. Multiple enrichment of the Carpathian-Pannonian mantle: Pb-Sr-Nd isotope and trace element constraints. J. Geophys. Res. 102, 14947–14961. Schmid, S.M., Pfiffner, O.A., Schonborn, G., Froitzheim, N., Kissling, E., 1997. Integrated cross section and tectonic evolution of the Alps along the eastern traverse. In: Pfiffner, O.A., Lehner, P., Heitzman, P., Mueller, S., Steck, A. (Eds.), Results of NPR 20, Deep structure of the Swiss Alps, 22. Birkhaeuser Verlag Publishers, Basel, Switzerland, pp. 289–304. Sebai, A., Feraud, G., Bertrand, H., Hanes, J., 1991. 40Ar/39Ar dating and geochemistry of tholeiitic magmatism related to the early opening of Central Atlantic Rift. Earth Planet. Sci. Lett. 104 (2-4), 455–472. Simmons, N.A., Forte, A.M., Grand, S.P., 2006. Constraining mantle flow with seismic and geodynamic data: a joint approach. Earth Planet. Sci. Lett. 246, 109–124. doi:10.1016/j.epsl.2006.04.003. Spakman, W., van der Lee, S., van der Hilst, R., 1993. Travel-time tomography of the European–Mediterranean mantle down to 1400 km. Phys. Earth Planet. Inter. 79, 3–74. Stampfli, G.M., Mosar, J., Favre, P., Pillevuit, A., Vannay, J.C., 2001. Permo- Mesozoic evolution of the western Tethyan realm: the Neotethys/East-Mediterranean connection. In: Ziegler, P.A., Cavazza,W., Robertson, A.H.F., Crasquin-Soleau, S. (Eds.), PeriTethys memoir 6: Peritethyan rift/wrench basins and passive margins, 186, Mém. Museum Nat. Hist. Nat., IGCP 369, pp. 51–108. Steinberger, B., 2000. Plumes in a convecting mantle: models and observations for individual hotspots. J. Geophys. Res. 105, 11,127–11,152. Stracke, A., Hofmann, A.W., Hart, S.R., 2005. FOZO, HIMU, and the rest of the mantle zoo. Geochem., Geophys., Geosyst. 6. doi:10.1029/2004GC000824. Szabo, C., Harangi, S., Csontos, L., 1992. Review of Neogene and Quaternary volcanism of the Carpathian–Pannonian region. Tectonophysics 208, 243–256. VanDecar, J.C., James, D.E., Assumpção, M., 1995. Seismic evidence for a fossil mantle plume beneath South America and implications for plate driving forces. Nature 378, 25–31. Wilson, M., Downes, H., 1991. Tertiary–Quaternary extension-related alkaline magmatism in western and central Europe. J. Petrol. 32, 811–849. Wilson, M., Downes, H., 1992. Mafic alkaline magmatism associated with the European Cenozoic rift system. Tectonophysics 208, 173–182. Wilson, M., 1997. Thermal evolution of the Central Atlantic passive margins: continental break-up above a Mesozoic super-plume. Geol. Soc. 154, 491–495. Wilson, M., Bianchini, G., 1999. Tertiary–Quaternary magmatism within the Mediterranean and surrounding regions. In: Durand, Jolivet, Horvath, Seranne (Eds.), The Mediterranean Basins: Tertiary extension within the Alpine orogen. Geol. Soc. London, vol. 156, pp. 141–168. Special public. Wilson, M., Downes, H., 2006. Teriary–Quaternary intra-plate magmatism in Europe and its relationships to mantle dynamics. In: Gee, D., Stephenson, R. (Eds.), European Lithosphere Dynamics. Geol. Soc. Lond. Mem., vol. 32, pp. 147–166. Zhang, Y.-S., Tanimoto, T., 1992. Ridges, hotspots and their interaction as observed in seismic velocity maps. Nature 355, 45–49. Ziegler, P.A., 1992. European Cenozoic rift system. In: Ziegler, P.A. (Ed.), Geodynamics of rifting, vol. 1. Tectonophysics, 208, pp. 91–111.en
dc.description.obiettivoSpecifico3.3. Geodinamica e struttura dell'interno della Terraen
dc.description.journalTypeJCR Journalen
dc.description.fulltextpartially_openen
dc.contributor.authorPiromallo, C.en
dc.contributor.authorGasperini, D.en
dc.contributor.authorMacera, P.en
dc.contributor.authorFaccenna, C.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentDipartimento di Scienze della Terra, Universita' di Pisa, Pisa, Italyen
dc.contributor.departmentDipartimento di Scienze della Terra, Universita' di Pisa, Pisa, Italyen
dc.contributor.departmentDipartimento di Scienze Geologiche, Università di Roma 3, Rome, Italyen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptDipartimento di Scienze della Terra, Universita’ di Pisa-
crisitem.author.deptDipartimento di Ingegneria Civile, Edile-Architettura e Ambientale, Università dell’Aquila-
crisitem.author.deptUniversità Roma Tre-
crisitem.author.orcid0000-0003-3478-5128-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Piromallo_etal_EPSL_2008_reprint.pdfMain article1.13 MBAdobe PDF
Table1_EPSL_2008.docSupplementary Data183 kBMicrosoft WordView/Open
Show simple item record

WEB OF SCIENCETM
Citations 50

33
checked on Feb 10, 2021

Page view(s) 50

244
checked on Apr 24, 2024

Download(s) 10

520
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric