Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/3683
DC FieldValueLanguage
dc.contributor.authorallSpencer, P. S. J.; Department of Electronic and Electrical Engineering, University of Bath, U.K.en
dc.contributor.authorallMitchell, C. N.; Department of Electronic and Electrical Engineering, University of Bath, U.K.en
dc.date.accessioned2008-02-26T13:35:21Zen
dc.date.available2008-02-26T13:35:21Zen
dc.date.issued2007-06en
dc.identifier.urihttp://hdl.handle.net/2122/3683en
dc.description.abstractThe imaging of fast-moving electron-density structures in the polar cap presents a unique set of challenges that are not encountered in other ionospheric imaging problems. GPS observations of total electron content in the polar cap are sparse compared to other regions in the Northern Hemisphere. Furthermore, the slow relative motion of the satellites across the sky complicates the problem since the velocity of the plasma can be large in comparison and traditional approaches could result in image blurring. This paper presents a Kalman-filter based method that incorporates a forward projection of the solution based on a model plasma drift velocity field. This is the first time that the plasma motion, rather than just integrations of electron density, has been used in an ionospheric imaging algorithm. The motion is derived from the Weimer model of the electric field. It is shown that this novel approach to the implementation of a Kalman filter provides a detailed view of the polar cap ionosphere under severe storm conditions. A case study is given for the October 2003 Halloween storm where verification is provided by incoherent scatter radars.en
dc.language.isoEnglishen
dc.relation.ispartofseries3/50 (2007)en
dc.subjectpolar cap ionosphereen
dc.subjectdata analysisen
dc.subjectinverse theoryen
dc.subjectionospheric stormsen
dc.titleImaging of fast moving electron-density structures in the polar capen
dc.typearticleen
dc.type.QualityControlPeer-revieweden
dc.subject.INGV01. Atmosphere::01.03. Magnetosphere::01.03.02. Magnetic stormsen
dc.relation.referencesBILITZA, D. (1997): International reference ionosphere – Status 1995/96, Adv. Space Res., 20 (9), 1751-1754. BUST, G.S., C. COKER, D.S. COCO, T.L. GAUSSIRAN and T. LAUDERDALE (2001): IRI data ingestion and ionospheric tomography, in International Reference Ionosphere - Workshop 1999, 157-165. BUST, G.S., T.W. GARNER and T.L. GAUSSIRAN (2004): Ionospheric data assimilation three-dimensional (IDA3D): a global, multisensor, electron density specification algorithm, J. Geophys. Res. Space Phys., 109 (A11312), doi: 10.1029/2003JA010234. DEAR, R.M. and C.N. MITCHELL (2007): GPS interfrequency biases and total electron content errors in ionospheric imaging over Europe, Radio Sci., 41 (6), RS6007, doi: 10.1029/2005RS003269. FOSTER, J.C., A.J. COSTER, P.J. ERICKSON, J.M. HOLT, F.D. LIND, W. RIDEOUT, M. MCCREADY, A. VAN EYKEN, R.J. BARNES, R.A. GREENWALD and F.J. RICH (2005): Multiradar observations of the polar tongue of ionization, J. Geophys. Res.-Space Phys., 110 (A09S31), doi: 10.1029/ 2004JA010928. FREMOUW, E.J., J.A. SECAN and B.M. HOWE (1992): Application of stochastic inverse-theory to ionospheric tomography, Radio Sci., 27, 721-732. GREENWALD, R.A., K.B. BAKER, J.R. DUDENEY, M. PINNOCK, T.B. JONES, E.C. THOMAS, J.P. VILLAIN, J.C. CERISIER, C. SENIOR, C. HANUISE, R.D. HUNSUCKER, G. SOFKO, J. KOEHLER, E. NIELSEN, R. PELLINEN, A.D.M. WALKER, N. SATO and H. YAMAGISHI (1995): Superdarn – A global view of the dynamics of high-latitude convection, Space Sci. Rev., 71, 761-796. HAJJ, G.A., B.D. WILSON, C. WANG, X. PI and I.G. ROSEN (2004): Data assimilation of ground GPS total electron content into a physics-based ionospheric model by use of the Kalman filter, Radio Sci., 39, RS1S05, doi: 10.1029/2002RS002859. HOWE, B.M., K. RUNCIMAN and J.A. SECAN (1998): Tomography of the ionosphere: four-dimensional simulations, Radio Sci., 33, 109-128. JUAN, J.M., A. RIUS, M. HERNANDEZ-PAJARES and J. SANZ (1997): A two-layer model of the ionosphere using global positioning system data, Geophys. Res. Lett., 24, 393- 396. MENKE, W. (1989): Geophysical Data Analysis: Discrete Inverse Theory (Academic Press, New York), pp. 289. MITCHELL, C.N. and P.S.J. SPENCER (2003): A three-dimensional time-dependent ionospheric imaging using GPS, Ann. Geophysics, 46 (4), 687-696. MITCHELL, C.N., L. ALFONSI, G. DE FRANCESCHI, M. LESTER, V. ROMANO and A.W. WERNIK (2005): GPS TEC and scintillation measurements from the polar ionosphere during the October 2003 storm, Geophys. Res. Lett., 32 (12), L12S03, doi: 10.1029/2004GL021644. RIDLEY, A.J., G. CROWLEY and C. FREITAS (2000): An empirical model of the ionospheric electric potential, Geophys. Res. Lett., 27 (22), 3675-3678. SCHUNK, R.W., L. SCHERLIESS, J.J. SOJKA, D.C. THOMPSON, D.N. ANDERSON, M. CODRESCU, C. MINTER, T.J. FULLERROWELL, R.A. HEELIS, M. HAIRSTON and B.M. HOWE (2004): Global Assimilation of Ionospheric Measurements (GAIM), Radio Sci., 39, RS1S02, doi: 10.1029/ 2002RS002794. SPENCER, P.S.J., D.S. ROBERTSON and G.L. MADER (2004): Ionospheric data assimilation methods for geodetic applications, in Proceedings of IEEE PLANS 2004, April 26-29, 2004, Monterey, CA, 510-517. STOLLE, C., J. LILENSTEN, S. SCHLÜTER, CH. JACOBI, M. RIETVELD and H. LÜHR (2006): Observing the north polar ionosphere on 30 October 2003 by GPS imaging and IS radars, Ann. Geophysicae, 24, 107-113. WATERMANN, J., G.S. BUST, J.P. THAYER, T. NEUBERT and C. COKER (2002): Mapping plasma structures in the highlatitude ionosphere using beacon satellite, incoherent scatter radar and ground-based magnetometer observations, Ann. Geophysics, 45 (1), 177-189. WEIMER, D.R. (1995): Models of high-latitude electric potentials derived with a least error fit of spherical harmonic coefficients, J. Geophys. Res. Space Phys., 100, 19595- 19607. WILSON, B.D., A.J. MANNUCCI and C.D. EDWARDS (1995): Subdaily Northern Hemisphere ionospheric maps using an extensive network of GPS receivers, Radio Sci., 30 (3), 639-648. YEH, K.C. and T.D. RAYMUND (1991): Limitations of ionospheric imaging by tomography, Radio Sci., 26 (6), 1361- 1380.en
dc.description.journalTypeJCR Journalen
dc.description.fulltextopenen
dc.contributor.authorSpencer, P. S. J.en
dc.contributor.authorMitchell, C. N.en
dc.contributor.departmentDepartment of Electronic and Electrical Engineering, University of Bath, U.K.en
dc.contributor.departmentDepartment of Electronic and Electrical Engineering, University of Bath, U.K.en
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptDepartment of Electronic and Electrical Engineering, University of Bath, U.K.-
crisitem.author.dept3Department of Electronic and Electrical Engineering, University of Bath-
crisitem.classification.parent01. Atmosphere-
Appears in Collections:Annals of Geophysics
Files in This Item:
File Description SizeFormat
10spencer.pdf4.93 MBAdobe PDFView/Open
Show simple item record

Page view(s) 50

199
checked on Apr 17, 2024

Download(s) 10

751
checked on Apr 17, 2024

Google ScholarTM

Check