Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/3681
DC FieldValueLanguage
dc.contributor.authorallAl-Bayari, O.; Department of Surveying and Geomatics Engineering, Faculty of Engineering, Al-Balqa’ Applied University, Al-Salt, Jordanen
dc.contributor.authorallAl-Zoubi, A.; Department of Surveying and Geomatics Engineering, Faculty of Engineering, Al-Balqa’ Applied University, Al-Salt, Jordanen
dc.date.accessioned2008-02-26T13:34:58Zen
dc.date.available2008-02-26T13:34:58Zen
dc.date.issued2007-06en
dc.identifier.urihttp://hdl.handle.net/2122/3681en
dc.description.abstractRecently, there has been an increased interest in studying and defining the Local and Regional Geoid Model worldwide, due to its importance in geodetic and geophysics applications.The use of the Global Positioning System (GPS) is internationally growing, yet the lack of a Geoid Model for Jordan has limited the use of GPS for the geodetic applications in the country. This work aims to present the preliminary results that we propose for «The Gravimetric Jordanian Geoid Model (GeoJordan)». The model is created using gravimetric data and the GRAVSOFT program. The model is validated using GPS and precise level measurements in the Amman area. Moreover, we present a comparison using the Global Geopotential Model OSU91A and the EGM96 Model and the results showed great discrepancies. We also present the approach used to obtain the orthometric height from GPS ellipsoidal height measurements. We found that the error margin obtained in this work of the GeoJordan after fitting the data with GPS/leveling measurements is about (10 cm) in the tested area whereas the standard error of the created model is about (40 cm).en
dc.language.isoEnglishen
dc.relation.ispartofseries3/50 (2007)en
dc.subjectGravimetric Jordanian Geoid Model (GeoJordan)en
dc.subjectLeast Square Collocation (LSC)en
dc.subjectGlobal Geopotential Model (GGM)en
dc.subjectGlobal Positioning System (GPS)en
dc.subjectundulation (N)en
dc.titlePreliminary study of the Gravimetric Local Geoid Model in Jordan: case study (GeoJordan Model)en
dc.typearticleen
dc.type.QualityControlPeer-revieweden
dc.subject.INGV04. Solid Earth::04.02. Exploration geophysics::04.02.02. Gravity methodsen
dc.relation.referencesAL-BAYARI, O., G. BITELLI, A. CAPRA, D. DONIMICI, E. ERCOLANI, G. FOLLONI, S. GANDOLFI, A. PELLEGRINELLI, M. UNGUENDOLI and L. VITTUARI (1996): A local geoid in the South-East of the Po Valley, in Proceedings of the XXI Assembly European Geophysical Society, 6-10 May 1996, The Hague, The Netherlands, Session G-7 ‘Techniques for local geoid determination’, 157-163. AL-ZOUBI, A.S. (2002): The Dead Sea Basin, its structural setting and evaporite tectonics, plate boundary zones, Geodyn. Ser. 30, 10.1029/030GD09, 145-172. AMOS, M.J. and W.E. FEATHERSTONE (2003): Progress towards a gravimetric geoid for New Zealand and a single national vertical datum, in Proceedings of the 3rd Meeting of the International Gravity and Geoid Commission,Gravity and Geoid 2002-GG2002, Thessaloniki, Greece, 395-400. ARABELOS, D. and C.C. TSCHERNING (2003): Globally covering apriori regional gravity covariance models, Adv. Geosci., 1, 143-147. BARZAGHI, R., M.A. BROVELLI, A. MANZINO, D. SGUERSO and G. SONA (1996): The new Italian quasi-geoid ITALGEO95, Boll. Geod. Sci. Affini, 15 (1), 57-72. BOTTONI, G.P. and R. BARZAGHI (1993): Fast collocation, Bull. Geod., 67, 119-126. DUQUENNE, H., Z. JIANG and C. LEMARIE (1995): Geoid determination and levelling by GPS: some experiments on a test network, in Proceedings of the IAG Symposium, 1994, Graz, Austria, 559-568. FEATHERSTONE, W.E., M.S. DENITH and J.F. KIRBY (1998): Strategies for the accurate determination of Orthometric Heights, Surv. Rev., 34 (267), 278-296. FEATHERSTONE, W.E., J.F. KIRBY, A.H.W KEARSLEY, J.R GILLILAND, G.M. JOHNSTON, J. STEED, R. FORSBERG and M.G. SIDERIS (2001): The AUSGeoid98 Geoid Model of Australia: data treatment, computations and comparisons with GPS-levelling data, J. Geod., 75, 313-330. FOTOPOULOS, G. (2003): An analysis on the optimal combination of Geoid, orthometric and ellipsoidal height data, Ph.D. Thesis (University of Calgary, Department of Geomatics Engineering, Canada). HEISKANEN,W.A. and H. MORITZ (1967): Physical Geodesy (W.H. Freeman and Company San Francisco), pp. 370. KIAMEHR, R. and L.E. SJOBERG (2005): Effect of the SRTM global DEM in the determination of a high-resolution Geoid Model of Iran, J. Geod., 79 (9), 540-551. KOTSAKIS, C. and M.G. SIDERIS (1999): On the adjustment of combined GPS/levelling/geoid networks, J. Geod., 73 (8), 412-421. LEE, J.T. and D.F. MAZERA (2000): Concerns related to GPSderived Geoid determination, Surv. Rev., 35 (276), 379- 397. LEMOINE, F.G., S.C. KENYON, R.G. FACTOR, R.G. TRIMMER, N.K. PAVLIS, D.S. CHINN, C.M. COX, S.M. KLOSKO, S.B. LUTHCKE, M.H. TORRENCE, Y.M. WANG, R.G. WILLIAMSON, E.C. PAVLIS, R.H. RAPP and T.R. OLSON (1998): The development of the joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) geopotential model EGM96, NASA/TP-1998-206861 (NASA, Washington), pp. 575. MART, U. (2002): Modelling of different height systems in Switzerland, presented at the IAG Third Meeting of International Gravity and Geoid Commission, August 26-30, 2002, Thessaloniki, Greece. MORITZ, H. (1980): Geodetic reference system 1980, Bull. Geod., 54, 395-405. RAPP, R.H. (1997): Use of the potential coefficient models for geoid undulation determinations using harmonic representation of the height anomaly/geoid undulation difference, J. Geod., 71 (5), 282-289. RAPP, R.H., Y.M. WANG and N.K. PAVLIS (1991): The Ohio State 1991 geopotential and sea surface topography harmonic coefficient model, Report 410 (Department of Geodetic Science and Surveying, Ohio State University, Columbus). SIDERIS, M. and B. SHE (1995): A new, high-resolution geoid for Canada and part of the US by the 1D-FFT method, Bull. Geod., 69 (2), 92-108. TSCHERNING, C.C. (1991): The use of optimal estimation for gross-error detection in databases of spatially correlated data, BGI, Bull. Inf., 68, 79-89. TSCHERNING, C.C. (1994): Geoid determination by leastsquares collocation using GRAVSOFT, Lecture Notes of the International School for the Determination and Use of the Geoid (DIIAR - Politecnico di Milano, Milano). YANALAK, M. and O. BAYKAL (2001): Transformation of ellipsoid heights to local leveling heights, J. Surv. Eng., 127 (3), 90-103.en
dc.description.journalTypeJCR Journalen
dc.description.fulltextopenen
dc.contributor.authorAl-Bayari, O.en
dc.contributor.authorAl-Zoubi, A.en
dc.contributor.departmentDepartment of Surveying and Geomatics Engineering, Faculty of Engineering, Al-Balqa’ Applied University, Al-Salt, Jordanen
dc.contributor.departmentDepartment of Surveying and Geomatics Engineering, Faculty of Engineering, Al-Balqa’ Applied University, Al-Salt, Jordanen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptAL-Balqa Applied Univers Jordan-
crisitem.author.deptDepartment of Surveying and Geomatics Engineering, Faculty of Engineering, Al-Balqa’ Applied University, Al-Salt, Jordan-
crisitem.author.orcid0000-0002-4827-9050-
crisitem.classification.parent04. Solid Earth-
Appears in Collections:Annals of Geophysics
Files in This Item:
File Description SizeFormat
7bayari.pdf2.43 MBAdobe PDFView/Open
Show simple item record

Page view(s) 50

199
checked on Apr 17, 2024

Download(s) 10

592
checked on Apr 17, 2024

Google ScholarTM

Check