Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/3676
DC FieldValueLanguage
dc.contributor.authorallStabile, T. A.; Dipartimento di Scienze Fisiche, Università degli Studi di Napoli Federico II, Napoli, Italyen
dc.contributor.authorallZollo, A.; Dipartimento di Scienze Fisiche, Università degli Studi di Napoli Federico II, Napoli, Italyen
dc.contributor.authorallVassallo, M.; Dipartimento di Scienze Fisiche, Università degli Studi di Napoli Federico II, Napoli, Italyen
dc.contributor.authorallIannaccone, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.date.accessioned2008-02-26T13:22:56Zen
dc.date.available2008-02-26T13:22:56Zen
dc.date.issued2007-06en
dc.identifier.urihttp://hdl.handle.net/2122/3676en
dc.description.abstractIn this paper we studied the physical properties of the Gulf of Naples (Southern Italy) for its use as a communication channel for the acoustic transmission of digital data acquired by seismic instruments on the seafloor to a moored buoy. The acoustic link will be assured by high frequency acoustic modems operating with a central frequency of 100 kHz and a band pass of 10 kHz. Since the maximum depth of the sea is about 300 m and the planned horizontal distance between the seismic instruments and the buoy is 2 km, the acoustic data transmission shall be near horizontal. In this study the signal-to-noise ratio is plotted against depth and distance from the source, thus defining the limit after which the transmitted information becomes unreliable. Using ray-theory, we compute the amplitudes of a transmitted signal at a grid of 21×12 receivers to calculate the transmission loss at each receiver. The signal-to-noise ratio is finally computed for each receiver knowing also the transmitter source level and the acoustic noise level in the Gulf of Naples. The results show that the multipath effects predominate over the effects produced by the sound velocity gradient in the sea in the summer period. In the case of omnidirectional transmitters with a Source Level (SL) of 165 dB and a bit rate of 2.4 kbit/s, the results also show that distances of 1400-1600 m can be reached throughout the year for transmitter-receiver connections below 50 m depth in the underwater acoustic channel.en
dc.language.isoEnglishen
dc.publisher.nameEditrice Compositorien
dc.relation.ispartofAnnals of Geophysicsen
dc.relation.ispartofseries3/50 (2007)en
dc.subjectunderwater acousticsen
dc.subjectsignal-to-noise ratioen
dc.subjectshallow wateren
dc.subjecthigh frequencyen
dc.subjectGulf of Naplesen
dc.titleUnderwater acoustic channel properties in the Gulf of Naples and their effects on digital data transmissionen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber313-328en
dc.subject.INGV03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoringen
dc.relation.referencesADAMS, A., O. HINTON, B. SHARIF, G. SALLES, N. ORR and C. TSIMINEDES (2000): An experiment in sub-sea networks – The LOTUS sea trials, in Proceedings of the ECUA’00, Lyon, France. AKYILDIZ, I.F., D. POMPILI and T. MELODIA (2005): Underwater acoustic sensor networks: research challenges, Ad Hoc Networks, 3 (3), 257-279. BADIA, L., M. MASTROGIOVANNI, C. PETRIOLI, S. STEFANAKOS and M. ZORZI (2006): An optimization framework for joint sensor deployment, link scheduling and routing in underwater sensor networks, in Proceedings of the First ACM International Workshop on Underwater Networks (WUWNet’06), Los Angeles, California, U.S.A., 56-63. BAGGEROER, A. (1984): Acoustic telemetry – An overview, IEEE J. Ocean. Eng., 9, 229-235. BENSON, B., G. CHANG, D. MANOV, B. GRAHAM and R. KASTNER (2006): Design of a low-cost acoustic modem for moored oceanographic applications, in Proceedings of the First ACM International Workshop on Underwater Networks (WUWNet’06), Los Angeles, California, U.S.A., 71-78. CATIPOVIC, J.A. (1990): Performance limitations in underwater acoustic telemetry, IEEE J. Ocean. Eng., 15, 205-216. CAZZOLATO, B.S., P. NELSON, P. JOSEPH and R.J. BRIND (2001): Numerical simulation of optimal deconvolution in a shallow-water environment, J. Acoust. Soc. Am., 110, 170-185. CHEN, C.T. and F.J. MILLERO (1977): Speed of sound in seawater at high pressure, J. Acoust. Soc. Am., 62, 1129- 1135. COATES, R.F.W. (1990): Underwater Acoustic Systems (John Wiley & Sons Ltd., New York), pp. 188. COATES, R.F.W. (1993): Underwater acoustic communications, in Proceeding of OCEANS ‘93, Victoria, Canada, III.420-III.425. COPPENS, A.B. (1981): Simple equations for the speed of sound in Neptunian waters, J. Acoust. Soc. Am., 69, 862-863. DAHL, P.H. (2004): The sea surface bounce channel. Bubble- medianted energy loss and time/angle spreading, in High Frequency Ocean Acoustics, edited by M. PORTER, M. SIDERIUS and W. KUPERMAN (American Institute of Physics), 194-203. DE DOMINICIS ROTONDI, A. (1990): Principi di Elettroacustica Subacquea (Ed. ELSAG, Genova), vol. I, pp. 422. DE DOMINICIS ROTONDI, A. (1995): Principi di Elettroacustica Subacquea. Le Caratterizzazioni dell’Smbiente Operativo Marino (Edizioni Scriba), vol. II, pp. 256. DE DOMINICIS ROTONDI, A. (1996): Principi di Elettroacustica Subacquea. Il Canale Acustico Marino (Edizioni Scriba), vol. III, pp. 512. DEL GROSSO, V.A. (1974): New equation for the speed of sound in natural waters (with comparisons to other equations), J. Acoust. Soc. Am., 56, 1084-1091. FARRA, V. and R. MADARIAGA (1987): Seismic waveform modeling in heterogeneous media by ray perturbation theory, J. Geophys. Res., 92, 2697-2712. FISHER, F.H. and V.P. SIMMONS (1977): Sound absorption in sea water, J. Acoust. Soc. Am., 62, 558-564. HAMILTON, E.L. (1978): Sound velocity gradients in marine sediments, J. Acoust. Soc. Am., 65, 909-922. HAMILTON, E. L. (1979): Vp/Vs and Poisson’s ratios in marine sediments and rocks, J. Acoust. Soc. Am., 66, 1093-1101. HAMILTON, E.L. (1980): Geoacoustic modeling of the sea floor, J. Acoust. Soc. Am., 68, 1313-1340. JAFFE, J. and C. SCHURGERS (2006): Sensor networks of freely drifting autonomous underwater explorers, in Proceedings of the First ACM International Workshop on Underwater Networks (WUWNet’06), Los Angeles, California, U.S.A., 93-96. JENSEN, F.B.,W.A. KUPERMAN, M.B. PORTER and H. SCHMIDT (2000): Computational Ocean Acoustics (Springer-Verlag), pp. 600. KINSLER, L.E., A.R. FREY, A.B. COPPENS and J.V. SANDERS (2000): Fundamentals of Acoustics (John Wiley & Sons Ldt., New York), 4th edition, pp. 560. KNUDSEN, V.O., R.S. ALFORD and J.W. EMLING (1948): Underwater ambient noise, J. Mar. Res., 22, 410-429. MACKENZIE, K.V. (1981): Nine-term equation for the sound speed in the oceans, J. Acoust. Soc. Am., 70, 807-812. NELDER, J.A. and R. MEAD (1965): A simplex method for function minimization, Comput. J., 7, 308-313. POMPILI, D., T. MELODIA and I.F. AKYILDIZ (2006): Deployment analysis in underwater acoustic wireless sensor networks, in Proceedings of the First ACM International Workshop on Underwater Networks (WUWNet’06), Los Angeles, California, U.S.A., 48-55. PREISIG, J. (2006): Acoustic propagation considerations for underwater acoustic communications network development, in Proceedings of the First ACM International Workshop on Underwater Networks (WUWNet’06), Los Angeles, California, U.S.A., 1-5. PRESS, W.H., S.A. TEUKOLSKY, W.T. VETTERLING and B.P. FLANNERY (2003): Numerical Recipes in Fortran 77: the Art of Scientific Computing (Cambridge University Press), 2nd edition, pp. 992 (available online at: <http:// www.nr.com>). SHANNON, C.E. (1948): A mathematical theory of communication, Bell System Technical J., 27, 379-423, 623-656. SMITH, K.B., A.A.M. ABRANTES and A. LARRAZA (2003): Examination of time-reversal acoustics in shallow water and applications to noncoherent underwater communications, J. Acoust. Soc. Am., 113, 3095-3110. SOZER, EM., M. STOJANOVIC and J. G. PROAKIS (2000): Underwater acoustic networks, IEEE J. Ocean. Eng., 25, 72-83. STOJANOVIC, M. (1996): Recent advances in high-speed underwater acoustic communications, IEEE J. Ocean. Eng., 21, 125-136. STOJANOVIC, M. (2004): Refocusing techniques for high rate acoustic communications, J. Acoust. Soc. Am., 117, 1173-1185. STOJANOVIC, M. (2006): On the relationship between capacity and distance in an underwater acoustic communication channel, in Proceedings of the First ACM International Workshop on Underwater Networks (WUWNet’06), Los Angeles, California, U.S.A., 41-47. STOJANOVIC, M., J.A. CATIPOVIC and J.G. PROAKIS (1993): Adaptive multichannel combining and equalization for underwater acoustic communications, J. Acoust. Soc. Am., 94, 1621-1631. STOJANOVIC, M., J.A. CATIPOVIC and J.G. PROAKIS (1994): Phase coherent digital communications for underwater acoustic channels, IEEE J. Ocean. Eng., 19, 100-111. STOJANOVIC, M., J.A. CATIPOVIC and J.G. PROAKIS (1995): Reduced complexity spatial and temporal processing of underwater acoustic communication signals, J. Acoust. Soc. Am., 98, 961-672. THORP,W.H. (1967): Analytic description of the low-frequency attenuation coefficient, J. Acoust. Soc. Am., 42, p. 270. URICK, R.J. (1986): Ambient Noise in the Sea (Peninsula Publishing), pp. 205. WENZ, G.M. (1962): Acoustic ambient noise in the ocean: spectra and sources, J. Acoust. Soc. Am., 34, 1936-1956. WONG, G.S.K. and S. ZHU (1995): Speed of sound in seawater as a function of salinity, temperature and pressure, J. Acoust. Soc. Am., 97, 1732-1736.en
dc.description.journalTypeJCR Journalen
dc.description.fulltextopenen
dc.contributor.authorStabile, T. A.en
dc.contributor.authorZollo, A.en
dc.contributor.authorVassallo, M.en
dc.contributor.authorIannaccone, G.en
dc.contributor.departmentDipartimento di Scienze Fisiche, Università degli Studi di Napoli Federico II, Napoli, Italyen
dc.contributor.departmentDipartimento di Scienze Fisiche, Università degli Studi di Napoli Federico II, Napoli, Italyen
dc.contributor.departmentDipartimento di Scienze Fisiche, Università degli Studi di Napoli Federico II, Napoli, Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptUnivesità di Napoli, Federico II, Dip. Scienze Fisiche-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.orcid0000-0002-8191-9566-
crisitem.author.orcid0000-0001-8552-6965-
crisitem.author.orcid0000-0002-1323-9016-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent03. Hydrosphere-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Annals of Geophysics
Files in This Item:
File Description SizeFormat
3stabile.pdf7.77 MBAdobe PDFView/Open
Show simple item record

Page view(s) 50

144
checked on Apr 20, 2024

Download(s) 5

799
checked on Apr 20, 2024

Google ScholarTM

Check