Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/3673
DC FieldValueLanguage
dc.contributor.authorallTarquini, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italiaen
dc.contributor.authorallIsola, I.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italiaen
dc.contributor.authorallFavalli, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italiaen
dc.contributor.authorallMazzarini, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italiaen
dc.contributor.authorallBisson, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italiaen
dc.contributor.authorallPareschi, M. T.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italiaen
dc.contributor.authorallBoschi, E.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione AC, Roma, Italiaen
dc.date.accessioned2008-02-26T13:06:02Zen
dc.date.available2008-02-26T13:06:02Zen
dc.date.issued2007-06en
dc.identifier.urihttp://hdl.handle.net/2122/3673en
dc.description.abstractA new Digital Elevation Model (DEM) of the natural landforms of Italy is presented. A methodology is discussed to build a DEM over wide areas where elevation data from non-homogeneous (in density and accuracy) input sources are available. The input elevation data include contour lines and spot heights derived from the Italian Regional topographic maps, satellite-based global positioning system points, ground based and radar altimetry data. Owing to the great heterogeneity of the input data density, the DEM format that better preserves the original accuracy is a Triangular Irregular Network (TIN). A Delaunay-based TIN structure is improved by using the DEST algorithm that enhances input data by evaluating inferred break-lines. Accordingly to this approach, biased distributions in slopes and elevations are absent. To prevent discontinuities at the boundary between regions characterized by data with different resolution a cubic Hermite blending weight S-shaped function is adopted. The TIN of Italy consists of 1.39×109 triangles. The average triangle area ranges from 12 to about 13000 m2 accordingly to different morphologies and different sources. About 50% of the model has a local average triangle area <500 m2. The vertical accuracy of the obtained DEM is evaluated by more than 200000 sparse control points. The overall Root Mean Square Error (RMSE) is less than 3.5 m. The obtained national-scale DEM constitutes an useful support to carry out accurate geomorphological and geological investigations over large areas. The problem of choosing the best step size in deriving a grid from a TIN is then discussed and a method to quantify the loss of vertical information is presented as a function of the grid step. Some examples of DEM application are outlined. Under request, an high resolution stereo image database of the whole Italian territory (derived from the presented DEM) is available to browse via internet.en
dc.language.isoEnglishen
dc.publisher.nameEditrice Compositorien
dc.relation.ispartofAnnals of Geophysicsen
dc.relation.ispartofseries3/50 (2007)en
dc.subjectItalyen
dc.subjecttriangular irregular networken
dc.subjectDEMen
dc.subjectinterpolation methoden
dc.titleTINITALY/01: a new Triangular Irregular Network of Italyen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber407-425en
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transporten
dc.relation.referencesACHILLI, V., P. BALDI, L., BARATIN, C. BOVINI, E. ERCOLANI, S. GANDOLFI, M. ANZIDEI and F. RIGUZZI (1998): Digital photogrammetric survey on the island of Vulcano, Acta Vulcanol., 10, 1-5. BAMBER, J.L., S. EKHOLM and W. KRABILL (2001): A new, high resolution digital elevation model of Greenland fully validated with airborne laser altimeter data, J. Geophys. Res., 106 (B4), 6733-6745. BISSON, M., M. FAVALLI, A. MORI, F. MAZZARINI, M.T. PARESCHI and L. SINAPI (2003): A morphometric model of the Aeolian Islands (Italy), Nuovo Cimento, 26 (4), 417-435. BISSON, M., M. FAVALLI, A. FORNACIAI, F. MAZZARINI, I. ISOLA, G. ZANCHETTA and M.T. PARESCHI (2005): A rapid method to assess fire-related debris flow hazard in the mediterranean region: an example from Sicily (Southern Italy), Int. J. Appl. Earth Obs. Geoinf., 7, 217-231. BISSON, M., M.T. PARESCHI, G. ZANCHETTA, R. SULPIZIO and R. SANTACROCE (2007): Volcaniclastic debris flow occurrences in the Campania Region (Southern Italy) and their relation to Holocene-Late Pleistocene pyroclastic fall deposits: implications for large scale hazard mapping, Bull. Volcanol., doi: 10.1007/s00445-007-0127-4. CARROZZO, M.T., D. LUZIO, C. MARGIOTTA, T. QUARTA, F. ZUANNI, A. CHIRENTI and A.M. TUNDO (1985): Data base of mean height values for the whole Italian landmass and surrounding areas: determining and statistical analysis, Boll. Geod. Sci. Affini, 44 (1), 38-56. CHAPLOT, V., F. DARBOUX, H. BOURENNANE, S. LEGUÉDOIS, N. SILVERA and K. PHACHOMPHON (2006): Accuracy of interpolation techniques for the derivation of digital elevation models in relation to landform types and data density, Geomorphology, 77, 126-141. FALORNI, G., V. TALES, E.R. VIVONI, R.L. BRAS and K.S. AMARATUNGA (2005): Analysis and characterization of the vertical accuracy of digital elevation models from the Shuttle Radar Mission, J. Geophys. Res., 110, F02005, doi: 10.1029/2003JF000113. FARR, T.G. and M. KOBRICK (2000): Shuttle radar Topography Mission produces a wealth of data, Eos, Trans. Am. Geophys. Un., 81 (48), 583-585. FAVALLI, M. and M.T. PARESCHI (2004): Digital elevation model construction from structured topographic data: the DEST algorithm, J. Geophys. Res., 109, F04004, doi: 10.1029/2004JF000150. FAVALLI, M., F. INNOCENTI, M.T. PARESCHI, G. PASCQUARÉ, F. MAZZARINI, S. BRANCA, L. CAVARRA and A. RIBALDI (1999): The DEM of Mt. Etna: geomorphological and structural implications, Geodin. Acta, 12 (5), 279-290. FAVALLI, M., M.T. PARESCHI, A. NERI and I. ISOLA (2005): Forecasting lava flow paths by a stochastic approach, Geophys. Res. Lett., 32, L03305, doi: 10.1029/ 2004GL021718. FAVALLI, M., G. CHIRICO, P. PAPALE, M.T. PARESCHI, M. COLTELLI, N. LUCAYA and E. BOSCHI (2006a): Computer simulations of lava flow paths in the town of Goma, Nyiragongo volcano, Democratic Republic of Congo, J. Geophys. Res., 111, B06202, doi: 10.1029/ 2004JB003527. FAVALLI, M., M.T. PARESCHI and G. ZANCHETTA (2006b): Simulation of syn-eruptive floods in the circumvesuvian plain (Southern Italy), Bull. Volcanol., 68, doi: 10.1007/s00445-005-0011-z, 349-362. GALLANT, J.C., I.D. MOORE, M.F. HUTCHINSON and P.E. GESSLER (1994): Estimating fractal dimension of profiles: a comparison of methods, Math. Geol., 26 (4), 455-481. GANAS A., S. PALLIDES and V. KARASTATHIS (2005): DEMbased morphometry of range-front escarpments in Attica, Central Greece, and its relation to fault slip rates, Geomorphology, 65, 301-319. GUZZETTI, F. and P. REICHENBACH (1994): Towards a definition of topographic division of Italy, Geomorphology, 11, 57-74. GUZZETTI, F., M. MARCHETTI and P. REICHENBACH (1997): Large alluvional fans in the north-central Po Plain (Northern Italy), Geomorphology, 18, 119-136. GUZZETTI, F., A. CARRARA, M. CARDINALI and P. REICHENBACH (1999): Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy, Geomorphology, 31, 181-216. HUTCHINSON, M.F. (1996): Australian Digital Elevation Model (<http://cres.anu.edu.au/outputs/ausdem.php> accessed on July 2007). KENWARD, T., D.P. LETTENMAIER, E.F. WOOD and E. FIELDING (2000): Effects of digital elevation models accuracy on hydrologic predictions, Remote Sensing Environ., 74, 432-444. KUHNI, A. and O.A. PFIFFNER (2001): The relief of the Swiss Alps and adjacent areas and its relation to lithology and structure: topographic analysis from a 250-m DEM, Geomorphology, 41, 285-307. LIU, H., K.C. JEZEK and B. LI (1999): Development of an Antarctic digital elevation model by integrating cartographic and remotely sensed data; a geographic information system based approach, J. Geophys. Res., 104 (10), 23199-23213. MACEDONIO, G. and M.T. PARESCHI (1991): An algorithm for the triangulation of arbitrarily distributed points: applications to volume estimate and terrain fitting, Comput. Geosci., 17, 859-874. MARTZ, L.W. and J. GARBRECHT (1995): Automated recognition of valley lines and drainage networks from grid digital elevation models: a review and a new method – Comment, J. Hydrol., 167 (1-4), 393-396. MASEROLI, R. (2002): Passaggio tra sistemi di riferimento geodetici. La nuova procedura adottata dall’IGM, Boll. Geod. Sci. Affini, 61 (2), 81-82. MAZZARINI, F., M.T. PARESCHI, M. FAVALLI, I. ISOLA, S. TARQUINI and E. BOSCHI (2005): Morphology of basaltic lava channels during the Mt. Etna September 2004 eruption from airborne laser altimeter data, Geophys. Res. Lett., 32, L04305, doi: 10.1029/ 2004GL021815. MOORE, I.D., R.B. GRAYSON and A.R. LADSON (1991): Digital terrain modelling: a review of hydrological, geomorphological and biological applications, Hydrol. Processes, 5, 3-30. NED-USGS (2000): US GeoData Digital Elevation Models (<http://erg.usgs.gov/isb/pubs/factsheets/fs14899.html> accessed on July 2007). ONORATI, G., M. POSCOLIERI, R. VENTURA, V. CHIARINI and U. CRUCILLA (1992): The digital elevation model of Italy for geomorphology and structural geology, Catena, 19 (2), 147-178. PARESCHI, M.T., M. FAVALLI, F. GIANNINI, R. SULPIZIO, G. ZANCHETTA and R. SANTACROCE (2000a): May 5, 1998, Debris flows in circumvesuvian areas (Southern Italy), insights for hazard assessment, Geology, 28 (7), 639-642. PARESCHI M.T., L. CAVARRA, M. FAVALLI, F. GIANNINI and A. MERIGGI (2000b): GIS and Volcanic Risk management, Nat. Hazard, 21, 361-379. PARESCHI, M.T., R. SANTACROCE, R. SULPIZIO and G. ZANCHETTA (2002): Volcanoclastic debris flows in the Clanio Valley (Campania, Italy): insight for the assessment of hazard potential, Geomorphology, 43, 219-231. PIKE, R.J. and W.J. ROZEMA (1975): Spectral analysis of landforms, Ann. Assoc. Am. Geogr., 65 (4), 449-516. PIKE, R.J., F. GUAZZETTI, R.K. MARK, G. BORTOLUZZI, M. LIGI, B. BENNETT,W. ACEVEDO and G.P. THELIN (1990): Synoptic maps of Italy’s topography from a digital elevation model, in Atti del I Workshop ‘Informatica e Scienze della Terra’, October 18-20, 1989, Sarnano (NA), Italy, 1-7. REICHENBACH, P., R.J. PIKE, W. ACEVEDO and R.K. MARK (1993): A new landform map of Italy in computershaded relief, Boll. Geod. Sci. Affini, 52 (1), 21-44. STEVENS, N.F., G. WADGE and J.B. MURRAY (1999): Lava flow volume and morphology from digitized contour maps: a case study at Mt. Etna, Sicily, Geomorphology, 28, 251-261. STEVENS, N.F., V. MANVILLE and D.W. HERON (2003): The sensitivity of a volcanic flow model to digital elevation model accuracy: experiments with digitised map contours and interferometric SAR at Ruapehu and Taranaki volcanoes, New Zealand, J. Volcanol. Geotherm. Res., 119, 89-105. SURACE, L. (1997): La nuova rete geodetica nazionale IGM95: risultati e prospettive di utilizzazione, Boll. Geod. Sci. Affini, 56 (3), 357-377. SWISSTOPO (2001): Swiss Federal Office of Topography. Product Information (<http://www.swisstopo.ch> accessed on July 2007). SZÉKELY, B. and D. KARÁTSON (2004): DEM-based morphometry as a tool for reconstructing primary volcanic landforms: examples from the Börzsöny Mountains, Hungary, Geomorphology, 63, 25-37. WATSON, D.F. (1981): Computing the N-dimensional Delaunay tessellation with application to Voronoi polytopes, Comput. J., 24 (2), 167-172. WEAVER, H.J. (Editor) (1983): Applications of Discrete and Continuous Fourier Analysis (John Wiley, New York), pp. 387. ZHANG, W. and D. MONTGOMERY (1994): Digital elevation model grid size, landscape representation, and hydrologic simulations, Water Resour. Res., 30 (4), 1019-1028. ZHOU, Q. and X. LIU (2004): Analysis on errors of derived slope and aspect related to DEM data properties, Comput. Geosci., 30 (4), 369-378.en
dc.description.obiettivoSpecifico5.4. TTC - Sistema Informativo Territorialeen
dc.description.journalTypeJCR Journalen
dc.description.fulltextopenen
dc.contributor.authorTarquini, S.en
dc.contributor.authorIsola, I.en
dc.contributor.authorFavalli, M.en
dc.contributor.authorMazzarini, F.en
dc.contributor.authorBisson, M.en
dc.contributor.authorPareschi, M. T.en
dc.contributor.authorBoschi, E.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione AC, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italia-
crisitem.author.orcid0000-0002-8064-621X-
crisitem.author.orcid0000-0002-3911-4676-
crisitem.author.orcid0000-0002-7338-6069-
crisitem.author.orcid0000-0002-3864-6558-
crisitem.author.orcid0000-0002-7104-9210-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Annals of Geophysics
Files in This Item:
File Description SizeFormat
9tarquini.pdf17.56 MBAdobe PDFView/Open
Show simple item record

Page view(s) 5

1,060
checked on Mar 27, 2024

Download(s) 5

1,151
checked on Mar 27, 2024

Google ScholarTM

Check