Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/365
DC FieldValueLanguage
dc.contributor.authorallCarminati, E.; Dipartimento di Scienze della Terra, Universita` La Sapienza, Rome, Italyen
dc.contributor.authorallDoglioni, C.; Dipartimento di Scienze della Terra, Universita` La Sapienza, Rome, Italyen
dc.contributor.authorallBarba, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.date.accessioned2005-08-23T14:14:50Zen
dc.date.available2005-08-23T14:14:50Zen
dc.date.issued2004en
dc.identifier.urihttp://hdl.handle.net/2122/365en
dc.description.abstractIn this work, the control exerted by the stress axes orientation on the evolution of seismic sequences developing in compressive and extensional regimes is analysed. According to the Anderson fault theory, the vertical stress is the minimum principal stress in compressional tectonic regimes, whereas it is the maximum principal stress in extensional regimes. Using Mohr diagrams and discussing the present knowledge about the distribution of vertical and horizontal stress with depth we show that, in absence of localised fluid overpressure, such changes imply that thrust and normal faults become more unstable at shallower and greater depths, respectively. These opposite mechanical behaviours predict, in a rather isotropic body, easier rupture at shallower level in compressional regimes later propagating downward. On the contrary, a first deep rupture propagating upward is expected in extensional regimes. This is consistent with observations from major earthquakes from different areas in the world. We show that the exceptions to downward migration along thrusts occur along steeply inclined faults and probably imply localised supra-hydrostatic fluid pressures. Moreover, we show that the inversion of the meaning of the lithostatic load has consequences also for the role of topography. High topography, increasing the vertical load, should inhibit earthquake development in compressional environments and should favour it in extensional settings. Although several factors, such as geodynamic processes, local tectonic features and rock rheology, are likely to control earthquake locations, stress distribution and tectonic regime, these model predictions are consistent with seismicity distribution in Italy, central Andes and Himalaya. In these areas, large to medium compressional earthquakes occur at the low elevation borders of compressional mountain belts, whereas large extensional earthquakes occur in correspondence to maximum elevations.en
dc.description.sponsorshipASI 2001, Cofin 2001 and GNDT fundingsen
dc.format.extent445 bytesen
dc.format.extent2823306 bytesen
dc.format.mimetypetext/htmlen
dc.format.mimetypeapplication/pdfen
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofEarth Science Reviewsen
dc.relation.ispartofseries65 (2004)en
dc.subjectSeismicity migrationen
dc.subjectthrustsen
dc.subjectnormal faultsen
dc.subjectaftershocksen
dc.titleReverse migration of seismicity on thrusts and normal faultsen
dc.typearticleen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber195-222en
dc.identifier.URLhttp://www.scienceserver.cilea.iten
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolutionen
dc.identifier.doidoi:10.1016/S0012-8252(03)00083-7en
dc.relation.referencesAki, K., 1992. Higher-order interrelations between seismogenic structures and earthquake processes. Tectonophysics 211, 1– 12. Amato, A., Barnaba, P.F., Finetti, I., Groppi, G., Martinis, B., Muzzin, A., 1976. Geodynamic outline and seismicity of Friuli Venetia Julia region. Boll. Geofis. Teor. Appl., XIX 72, 217– 256. Amato, A., Selvaggi, G., 1993. Aftershock location and P-velocity structure in the epicentral region of the 1980 Irpinia earthquake. Ann. Geofis. 36, 3– 15. Anderson, E.M., 1951. The Dynamics of Faulting and Dyke formation with application to Britain, 2nd ed. Oliver and Boyd, Edinburgh. Barba, S., Basili, R., 2000. The analysis of seismological and geological observations for moderate sized earthquakes: the Colfiorito fault system (Central Apennines, Italy). Geophys. J. Int. 141, 241– 252. Bernard, P., Zollo, A., 1989. The Irpinia (Italy) 1980 earthquake: detailed analysis of a complex normal fault. J. Geophys. Res., B 94, 1631– 1648. Biagi, P.F., Caloi, P., Migani, M., Spadea, M.C., 1976. Tilting variations and seismicity that preceded the strong Friuli earthquake of May 6th, 1976. Ann. Geofis. 29 (3), 137– 145. Boschi, E., Guidoboni, E., Farrari, G., Valensise, G., Gasperini, G., 1997. Catalogo dei forti terremoti in Italia dal 461 a.C. al 1990. Istituto Nazionale di Geofisica, Roma. E. Carminati et al. / Earth-Science Reviews 65 (2004) 195–222 219 Bowman, J.R., 1988. Constraints on locations of large intraplate earthquakes in the Northern Territory, Australia from observations at the Warramunga seismic array. Geophys. Res. Lett. 15, 1475–1478. Bowman, J.R., Dewey, J.W., 1991. Relocation of teleseismically recorded earthquakes near Tennant Creek, Australia; implications for midplate seismogenesis. J. Geophys. Res., B 96, 11973– 11979. Bowman, J.R., Gibson, G., Jones, T., 1990. Aftershocks of the 1988 January 22 Tennant Creek, Australia intraplate earthquakes; evidence for a complex thrust-fault geometry. Geophys. J. Int. 100, 87– 97. Braitenberg, C., Zadro, M., 1999. The Grotta Gigante horizontal pendulums—instrumentation and observations. Boll. Geofis. Teor. Appl. 40, 577–582. Brudy, M., Zoback, M.D., Fuchs, K., Rummel, F., Baumgaertner, J., 1997. Estimation of the complete stress tensor to 8 km depth in the KTB scientific drill holes: implications for crustal stress. J. Geophys. Res., B 102, 18453– 18475. Byerlee, J.D., 1978. Friction of rocks. Pure Appl. Geophys. 116, 615– 626. Calderoni, G., Azzara, R., Cattaneo, M., Di Bona, M., Mele, F., Selvaggi, G., 2000. Analisi preliminare della sequenza del Forlivese (Aprile –Maggio 2000). Proceedings of XIX GNGTS Meeting. CNR, Rome, p. 242. Caloi, P., Spadea, M.C., 1955. Relazioni fra lente variazioni di inclinazione e moti sismici in zona ad elevata sismicit. Rc. Accad. Naz. Lincei, Ser. 8 (18), 250– 256. Cassidy, J.F., Rogers, G.C., Waldhauser, F., 2000. Characterization of active faulting beneath the Strait of Georgia, British Columbia. Bull. Seismol. Soc. Am. 90, 1188– 1199. Chinn, D.S., Isacks, B.L., 1983. Accurate source depths and focal mechanisms of shallow earthquakes in Western South America and in the New Hebrides Island Arc. Tectonics 2, 529– 563. Choy, G.L., Boatwright, J., 1988. Teleseismic and near-field analysis of the Nahanni earthquakes in the northwestern territories, Canada. Bull. Seismol. Soc. Am. 78, 1627–1652. Choy, G.L., Bowman, J.R., 1990. Rupture process of a multiple main shock sequence; analysis of teleseismic, local, and field observations of the Tennant Creek, Australia, earthquakes of January 22, 1988. J. Geophys. Res., B 95, 6867– 6882. Choy, G.L., Boatwright, J., Dewey, J.W., Sipkin, S.A., 1983. A teleseismic analysis of the New Brunswick earthquake of January, 9, 1982. J. Geophys. Res. 88 (B), 2199–2212. Chrone, A.J., Machette, M.N., Bonilla, M.G., Lienkaemper, J.J., Pierce, K.L., Scott, W.E., Bucknam, R.C., 1987. Surface faulting accompanying the Borah Peak earthquake and segmentation of the Lost River Fault, central Idaho. Bull. Seismol. Soc. Am. 77, 739–770. Cisternas, et al., 1989. The Spitak (Armenia) earthquake of Decemen
dc.description.fulltextpartially_openen
dc.contributor.authorCarminati, E.en
dc.contributor.authorDoglioni, C.en
dc.contributor.authorBarba, S.en
dc.contributor.departmentDipartimento di Scienze della Terra, Universita` La Sapienza, Rome, Italyen
dc.contributor.departmentDipartimento di Scienze della Terra, Universita` La Sapienza, Rome, Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
item.openairetypearticle-
item.openairetypearticle-
item.cerifentitytypePublications-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione AC, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.orcid0000-0002-8651-6387-
crisitem.author.orcid0000-0001-7965-6667-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Conference materials
Article published / in press
Article published / in press
Manuscripts
Files in This Item:
File Description SizeFormat
redirect_elsevier.html''redirect file''445 BHTMLView/Open
barba_esr_04.pdf''Main article''2.76 MBAdobe PDF
ESR_04_post.pdfPostprint9.34 MBAdobe PDFView/Open
Show simple item record

Page view(s) 10

326
checked on Apr 13, 2024

Download(s) 5

1,255
checked on Apr 13, 2024

Google ScholarTM

Check

Altmetric