Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/3540
DC FieldValueLanguage
dc.contributor.authorallPiromallo, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallFaccenna, C.; Universita` di Roma Tre, Romaen
dc.date.accessioned2008-01-15T07:57:22Zen
dc.date.available2008-01-15T07:57:22Zen
dc.date.issued2004en
dc.identifier.urihttp://hdl.handle.net/2122/3540en
dc.description.abstractSlab-like seismic velocity heterogeneities below the Alpine chain, interpreted as subducted lithosphere, are imaged by tomographic studies down to only about 300 km depth. A non-negligible discrepancy therefore exists between tomographic and geological data, the latter indicating at least 500 km of Tertiary convergence at trench. Yet a recently published tomographic study detects a pronounced high velocity anomaly at the bottom of the upper mantle right below the Alpine area. Combining tomographic images of the mantle, geological findings and plate system kinematics, we investigate how the presence of this feature in the transition zone below the Alps can be traced back to the Tertiary Alpine subduction and possibly explain the observed discrepancy. We propose that a part of the fast velocity body now residing just above the 660 km discontinuity once belonged to the Alpine slab, torn off by an event occurred at about 30–35 Ma.en
dc.language.isoEnglishen
dc.publisher.nameAGUen
dc.relation.ispartofGeophys. Res. Lett.en
dc.relation.ispartofseries/31 (2004)en
dc.subjectAlpsen
dc.subjectupper mantleen
dc.subjecttomographyen
dc.subjectsubductionen
dc.subjectbreak-offen
dc.subjecttransition zoneen
dc.titleHow deep can we find the traces of Alpine subduction?en
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberL06605en
dc.subject.INGV04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamicsen
dc.identifier.doi10.1029/2003GL019288en
dc.relation.referencesBabuska, V., et al. (1990), The deep lithosphere in the Alps: A model inferred from P residuals, Tectonophysics, 176, 137– 165. Channell, J. E. T. (1986), Paleomagnetism and continental collision in the Alpine belt and the formation of late-tectonic extensional basins, in Collision Tectonics, edited by M. P. Coward et al., Geol. Soc. Spec. Publ. London, 19, 261– 284. Chopin, C. (1984), Coesite and pure pyrope in high-grade blueschists of the western Alps: A first record and some consequences, Contrib. Mineral. Petrol., 86, 107– 118. Collombet, M., et al. (2002), Counterclockwise rotation of the western Alps since the Oligocene: New insights from paleomagnetic data, Tectonics, 21(4), 1032, doi:10.1029/2001TC901016. Dercourt, J., et al. (1986), Geological evolution of the Tethys from the Atlantic to the Pamirs since the Lias, Tectonophysics, 123, 241– 315. Dewey, J. F., et al. (1989), Kinematics of the western Mediterranean, in Alpine Tectonic, edited by M. P. Coward and D. Dietrich, Geol. Soc. Spec. Publ. London, 45, 265– 283. Faccenna, C., et al. (2004), Lateral slab deformation and the origin of the western Mediterranean arcs, Tectonics, 23, TC1012, doi:10.1029/ 2002TC001488. Gordon, R. G., and D. M. Jurdy (1986), Cenozoic global plate motion, J. Geophys. Res., 91, 12,389– 12,406. Hager, B. H. (1984), Subducted slabs and the geoid: Constraints on mantle rheology and flow, J. Geophys. Res., 89, 6003– 6015. International Seismological Centre (1997), Bulletin Disks 1– 6, Int. Seismol. Cent., Thatcham, U. K. Kissling, E. (1993), Deep structure of the Alps—What do we really know?, Phys. Earth Planet. Inter., 79, 87–112. Lippitsch, R., et al. (2003), Upper mantle structure beneath the Alpine orogen from high-resolution teleseismic tomography, J. Geophys. Res., 108(B8), 2376, doi:10.1029/2002JB002016. Lucente, F. P., et al. (1999), Tomographic constraints on the geodynamic evolution of the Italian region, J. Geophys. Res., 104, 20,307–20,327. Marquering, H., and R. Snieder (1996), Shear-wave velocity structure beneath Europe, the northeastern Atlantic and western Asia from waveform inversions including surface-wave mode coupling, Geophys. J. Int., 127, 283– 304. Morelli, A., and A. Dziewonski (1993), Body wave traveltimes and a spherically symmetric P- and S-wave velocity model, Geophys. J. Int., 112, 178– 194. Piromallo, C., and A. Morelli (1997), Imaging the Mediterranean upper mantle by P-wave traveltime tomography, Ann. Geofis., XL, 963–979. Piromallo, C., and A. Morelli (2003), P-wave tomography of the mantle under the Alpine-Mediterranean area, J. Geophys. Res., 108(B2), 2065, doi:10.1029/2002JB001757. Ranalli, G. (2000), Rheology and subduction of continental lithosphere, in Crust Mantle Interactions, Siena, 24 September– 3 October 1999: Proceedings of the International School of Earth and Planetary Sciences, pp. 21– 40, edited by G. Ranalli, C. A. Ricci, and V. Trommsdorff, Int. Sch. of Earth and Planet. Sci., Siena, Italy. Regard, V. C., et al. (2003), From subduction to collision: Control of deep processes on the evolution of convergent plate boundary, J. Geophys. Res., 108(B4), 2208, doi:10.1029/2002JB001943. Schmid, S. M., and E. Kissling (2000), The arc of the western Alps in the light of geophysical data on deep crustal structure, Tectonics, 19, 62– 85. Schmid, S. M., et al. (1996), Geophysical-geological transect and tectonic evolution of the Swiss-Italian Alps, Tectonics, 15, 1036–1064. Sinclair, H. D. (1997), Flysch to molasse transition in peripheral foreland basins: The role of the passive margin versus slab breakoff, Geology, 25, 1123–1126. Solarino, S., et al. (1996), Litho-asthenospheric structures of northern Italy as inferred from teleseismic P-wave tomography, Tectonophysics, 260, 271– 289. Spakman, W., et al. (1993), Traveltime tomography of the European-Mediterranean mantle down to 1400 km, Phys. Earth Planet. Inter., 79, 3– 74. Stampfli, G., et al. (2001), Permo-Mesozoic evolution of the western Tethys realm: The Neo-Tethys east Mediterranean basin connection, in Peri- Tethys Memoir, vol. 6, Peri-Tethyan Rift/Trench Basins And Passive Margins, Publ. Sci. du Mus. 185, edited by P. A. Ziegler et al., pp. 51– 108, Paris. von Blankenburg, F., and J. H. Davies (1995), Slab breakoff: A model for syncollisional magmatism and tectonics in the Alps, Tectonics, 14, 120– 131. Wong, A., S. Y. M. Ton, and M. J. R. Wortel (1997), Slab detachment in continental collision zones: An analysis of controlling parameters, Geophys. Res. Lett., 24, 2095– 2098. Wortel, M. J. R., and W. Spakman (2000), Subduction and slab detachment in the Mediterranean-Carpathian region, Science, 290, 1910– 1917.en
dc.description.obiettivoSpecifico3.3. Geodinamica e struttura dell'interno della Terraen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorPiromallo, C.en
dc.contributor.authorFaccenna, C.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentUniversita` di Roma Tre, Romaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptUniversità Roma Tre-
crisitem.author.orcid0000-0003-3478-5128-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Piromallo&Faccenna_GRL_2004.pdf321.22 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

51
checked on Feb 10, 2021

Page view(s) 50

170
checked on Apr 17, 2024

Download(s)

24
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric