Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/349
DC FieldValueLanguage
dc.contributor.authorallBellomo, S.; PhD Thesisen
dc.date.accessioned2005-08-05T09:31:14Zen
dc.date.available2005-08-05T09:31:14Zen
dc.date.issued2005en
dc.identifier.urihttp://hdl.handle.net/2122/349en
dc.description.abstractFluorine is the most reactive and the most electronegative of all elements, meaning that it has a powerful attraction for electrons and that it is able to attack all other elements, with the exception of oxygen and nitrogen, so it is not found in the free elemental state in nature. Fluorine is widely distributed throughout the earth’s crust as the fluoride ion. Fluorine is reported to be the 13th most abundant element in the earth’s crust (Smith and Hodge, 1979), with an average concentration of 0.032% by weight. Fluorides are released into the environment naturally through the weathering and dissolution of minerals, the emissions from volcanoes and from marine aerosols (WHO, 2002). Fluorides are also released into the environment via coal combustion and process waters and waste from various industrial processes, including steel manufacture, primary aluminium, copper and nickel production, phosphate ore processing, phosphate fertilizer production and use, petroleum refining, glass, brick and ceramic manufacturing, and glue and adhesive production (WHO, 2002). Based on available data, phosphate ore production and use as well as aluminium manufacture are the major industrial sources of fluoride release into the environment. According to Wellburn (1997), fluorine (in the form of HF) occupies - after O3, SO2 and nitrogencontaining air pollutants - the fourth place with regard to its detrimental effects on harvest, at least in the US. Relative to its weight fluorine even has the highest level of phytotoxicity of all air pollutants. Wellburn (1997) reports that F-related damages at sensitive plants can develop at concentration levels 10 to 10.000 times lower than other pollutants. There is no doubt that inorganic fluoride was one of the major air pollutants of the 20th century damaging crops, forests and natural vegetation, and causing fluorosis in factory workers, livestock and wild mammals. However there have been enormous improvements during the last 40 years in the containment and scrubbing of emissions, so that modern fluoride emitting industries generally have little or no environmental impact outside the factory fence at the present time (Weinstein and Davison, 2003). On the other hand, fluoride emissions from volcanoes and the natural occurrence of excessive amounts of fluoride in drinking water have affected the health of humans and livestock for centuries, if not millennia. For example some historical report tells that Pliny the Elder was dispatched by fluoride-containing fumes from a Vesuvian eruption, although other state that the cause of its death had actually no relation to volcanic activity. Whether the story is true or not,fluoride was certainly the agent responsible for the death of sheep after the volcanic eruption described in the Icelandic sagas, and fluoride emissions from volcanoes continue to affect the health of humans and livestock today (Georgsson and Petursson, 1972; Fridriksson, 1983; Araya et al.,1990; Cronin et al., 2002). Fluorine is emitted by volcanoes mostly as HF, but emissions from Vesuvius and Vulcano in Italy have been shown to contain also NH4F, SiF4, (NH4)2SiF6, NaSiF6, K2SiF6 and KBF4 (Weinstein and Davison, 2003). Volcanoes are also an important source of organo-fluorides, including some CFCs (Schwandner et al., 2004). Estimations of the global release of fluorine to the atmosphere by volcanic activity ranges from 50 to 8600 Gg/a (Cadle, 1980; Symonds et al., 1988; Halmer et al., 2002) with the lowest figures being probably an underestimate. Average HF emission rates from Mt. Etna can be estimated to about 75 Gg/a (Aiuppa et al., 2004a). This makes Mt. Etna the largest known point atmospheric source of fluorine (Francis et al., 1998), even stronger than todays estimated anthropogenic release over whole Europe (Preunkert et al., 2001). The environmental impact of anthropogenic fluorine emissions have long been studied considering all main type of activity, for example coal burning (Ando et al., 2001), aluminium smelters (Egli et al., 2004) or phosphate fertiliser production (Klumpp et al, 1996) and all types of receptors (air – Liu, 1995; glaciers - Preunkert et al., 2001; surface waters – Skjelkvale, 1994; vegetation – Weinstein, 1977; Weinstein and Davison, 2003; soils – Polomski et al., 1982; wildlife – Kierdorf and Kierdorf, 2000; etc.). Considerably fewer studies have been devoted to the consequences of volcanic fluorine emissions and most of them were focussed on the impact of fluorine released through explosive volcanic eruptions (Georgsson and Petursson, 1972; Oskarsson, 1980; Thorarinsson, 1979; Cronin et al., 2002). Recent researches have highlighted that passive degassing – quietly but persistently releasing volcanogenic pollutants - may also have profound impact on the ecosystems downwind, sometimes disrupting the social and economic activities of populations (Delmelle et. al., 2002; Delmelle, 2003). In this context, the impact of volcanogenic fluorine has been assessed on vegetation growing along the flanks of volcanoes (Guadeloupe – Garrec et al., 1977; Masaya – Garrec et al., 1984; Etna – Garrec et al., 1984; Notcutt and Davies, 1989; La Palma – Davies and Nottcut, 1989; Hawaii - Notcutt and Davies, 1993; Furnas - Notcutt and Davies, 1999) on rainwater chemistry (Hawaii - Harding & Miller, 1982; Vulcano Island – Capasso et al., 1993; Etna – Aiuppa et al., 2001; Stromboli Island – Bellomo et al., 2003) and on soils (Delmelle et al.,2003). The aim of the present PhD thesis is to provide original data on the geochemical cycling of fluorine of an active volcanic system like Mt. Etna. An assessment of the impact of volcanic fluorine on the local environment is also attempted by analysing different media (atmospheric air, rainwater, volcanic ashes, vegetation and soil).en
dc.description.sponsorship-Università degli Studi di Palermo, Italy -Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Palermo - Unione Europea, Fondo Sociale Europeoen
dc.format.extent2817811 bytesen
dc.format.mimetypeapplication/pdfen
dc.language.isoEnglishen
dc.subjectfluorineen
dc.subjectandosoilen
dc.subjectatmospheric gasesen
dc.subjectrainwateren
dc.titleEnvironmental impact of magmatic fluorine emission in the Mt. Etna areaen
dc.typethesisen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.subject.INGV01. Atmosphere::01.01. Atmosphere::01.01.03. Pollutionen
dc.subject.INGV01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effectsen
dc.subject.INGV01. Atmosphere::01.01. Atmosphere::01.01.08. Instruments and techniquesen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.01. Gasesen
dc.subject.INGV05. General::05.08. Risk::05.08.01. Environmental risken
dc.relation.references• Acocella V., Neri M. (2003) What makes flank eruptions? The 2001 Mount Etna eruption and its possible triggering mechanism. Bull. Volcanol. 65, 517-529 • Aiuppa A. (1999) Trace element geochemistry of volcanic fluids released by eastern Sicilian volcanoes (southern Italy). PhD Thesis. University of Palermo, pp. 100 • Aiuppa A., Allard P., D’Alessandro W., Michel A., Parello F., Treuil M., Valenza M. (2000) Mobility and fluxes of major, minor and trace metals during basalt weathering and groundwater transport at Mt. Etna volcano (Sicily). Geochim. Cosmochim. Acta, 64(11), 1827–1841. • Aiuppa A., Bonfanti P., Brusca L., D’Alessandro W., Federico C., Parello F. (2001) Evaluation of the environmental impact of volcanic emissions from the chemistry of rainwater: Mount Etna area (Sicily). Appl. Geochem. 16, 985-1000 • Aiuppa A., Federico C., Paonita A., Pecoraino G., Valenza M. (2002) S, Cl and F degassing as an indicator of volcanic dynamics: the 2001 eruption of Mount Etna. Geophys. Res. Lett. 29(11), doi 10.1029/2002GL015032 • Aiuppa A., Bonfanti P., D'Alessandro W. (2003a) The chemistry of rainwater in the Mt. Etna area (Italy): natural and anthropogenic sources of major species. J. Atmosph. Chem. 46, 89-102 • Aiuppa A., Bellomo S., Brusca L., D’Alessandro W., Federico C. (2003b). Natural and anthropogenic factors affecting groundwater quality of an active volcano (Mt. Etna, Italy). Appl. Geochem. 18, 863-882 • Aiuppa A., Dongarrà G., Valenza M., Federico C., Pecoraino G. (2003c) Degassing of trace volatile metals during the 2001 eruption of Etna. In: Robock A., and Oppenheimer C. (eds) Volcanism and the Earth’s atmosphere. AGU Geophysical monograph 139, 41-54 • Aiuppa A., Bellomo S., D’Alessandro W., Federico C., Ferm M., Valenza M. (2004a) Volcanic plume monitoring at Mount Etna by diffusive (passive) sampling. J. Geophys. Res. 109/D21D21308 • Aiuppa A., Federico C., Giudice G., Gurrieri S., Paonita A., Valenza M. (2004b) Plume chemistry provides insights into the mechanisms of sulfur and halogen degassing at basaltic volcanoes. Earth. Planet. Sci. Lett. 222, 469-483 • Allard P., Aiuppa A., Loyer H., Carrot F., Gaudry A., Pinte G., Michel A., Dongarrà G. (2000). Acid gas and metal emission rates during long-lived basalt degassing at Stromboli volcano. Geophys. Res. Lett.; 27(8), 1207-1210. • Allard, P., Carbonelle J., Dajlevic D., Le Bronec J., Morel P., Robe M.C.,. Maurenas J.M, Faivre-Pierret R., Martin D., Sabroux J.C., and Zettwoog P. (1991) Eruptive and diffuse emissions of CO2 from Mount Etna, Nature, 351, 387-391. • Allen A.G., Baxter P.J., Ottley C.J. (2000) Gas and particle emissions from Soufrière Hills Volcano, Montserrat, West Indies: characterization and health hazard assessment. Bull. Volcanol. 62, 8–19 • Ando M., Todano M., Yamamoto S., Tamura K., Asanuma S., Watanabe T., Kondo T., Sakurai S.J.R., Liang C., Chen X., Hong Z., Cao S., (2001). Health effects of fluoride caused by coal burning. Sci. Total. Environ. 271, 107-116. • Andres R.J., Kyle P.R., Chuan R.L. (1993) Sulphur dioxide, particle and elemental emissions from Mt. Etna, Italy during July 1987. Geol. Rundsch. 82, 687-395 • Andronico D., Branca S., Calvari S., Burton M., Caltabiano T., Corsaro R.A., Del Carlo P., Garfì G., Lodato L., Miraglia L., Murè F., Neri M., Pecora E., Pompilio M., Salerno G. and Spampinato L. (2004). A multi-disciplinary study of the 2002–03 Etna eruption: insights into a complex plumbing system. Bull. Volcanol. (in press) • Anfossi, D., and Sacchetti D. (1994). Transport of volcano Etna emissions towards the Alpine region using ECMWF data, Il Nuovo Cimento, 17, 473-484. • Araya O., Wittwer F., Villa A., Ducom C., (1990). Bovine fluorosis following volcanic activity in the southern Andes. Vet. Rec. 126, 641-642. • Armienta M.A., Martin-Del Pozzo A.L. , Espinosa R., Cruz O., Ceniceros N., Aguayo A., Butron M.A(1998). Geochemistry of ash leachates during the 1994-1996 activity of Popocatepetl volcano. Appl. Geochem., 13(7), 841- 850. • Arndt, U., Flores, F., Weinstein, L., (1995). Fluoride Effects on Plants. Diagnosis of Injury in the Vegetation of Brazil. Editora da Universidade, Porto Alegre, RS, Brazil. • Arnesen A. K.M, Abrahamsen G, Sandvik G and Krogstad T (1995). Aluminium smelters and fluoride pollution of soil and soil solution in Norway. Sci. Total Environ. 163, 39–53. • Arnesen A.K.M. (1997). Availability of fluoride to plants grown in contaminated soils. Plant. Soil. 191, 13–25 • Barberi F., Civetta L., Gasparini P., Innocenti F., Scandone R., Villari L. (1974) Evolution of a section of the Africa-Europe plate boundary: paleomagnetic and volcanological evidence from Sicily. Earth Planet Sci. Lett. 22, 123-132 • Baxter, P.J., Stoiber R.E., and Williams S.N., (1982) Volcanic gases and health: Masaya volcano, Nicaragua, Lancet, 2, 150–151. • Baxter, P.J., Tedesco, D., Miele G., Boubron, J.C., Cliff, K., (1990). Health Hazards from volcanic gases. Lancet, 176 (July 21, 1990). • Behncke B., Neri, M. (2003): The July-August 2001 eruption of Mt. Etna (Sicily). Bull. Volcanol. 65, 461-476, doi: 10.1007/s00445-003-0274-1. • Bellomo S., D'Alessandro W., Longo M. (2003) Volcanogenic fluorine in rainwater around active degassing volcanoes: Mt. Etna and Stromboli island, Italy. Sci. Total Environ. 301, 175–185 • Blakemore L.C., Searle P.L. and Daly B.K., (1987). Methods for chemical Analysis of Soils. Scientific report No. 80 New Zealand Soil Bureau, Lower Hutt, New Zealand. • Brewer R.F. (1966) Fluorine. In Diagnostic Criteria for Plants and Soils. Ed. H D Chapman. pp 80–196. Univ. California Press, California. • Bruno N., Caltabiano T., Longo V., Salerno G.G. (2003) Misure del flusso di SO2 dall’Etna con spettrometro COSPEC: Aggiornamento alla misura del 12 febbraio 2003. INGV-Ct Internal Report • Buat-Menard P., and Arnold M., (1978) The heavy metal chemistry of atmospheric particulate matter emitted by Mount Etna volcano: Geophys. Res. Lett., 5, 245. • Burton M., Allard P., Murè F., Oppenheimer C. (2003) FTIR remote sensing of fractional magma degassing at Mt. Etna, Sicily, In: Volcanic degassing. Oppenheimer C., Pyle D., Barclay J. (eds)Geol Soc London Spec. Publ. 213 • Cadle R.D. (1980). A comparison of volcanic with other fluxes of atmospheric trace gas constituents. Rev. Geophys. 18, 746-752. • Caltabiano T., Romano R., and Budetta G., (1994). SO2 flux measurements at Mount Etna, Sicily,J. Geophys. Res., 99(D6), 12809-12819. • Caltabiano T., Burton M., Giammanco S., Allard P., Bruno N., Murè F., Romano R. (2004) Volcanic Gas Emissions From the Summit Craters and Flanks of Mt. Etna, 1987-2000. In: Bonaccorso A., Calvari S., Coltelli M., Del Negro C., Falsaperla S. (eds) Mt. Etna: Volcano Laboratory AGU Geophysical Monograph Series 143 • Camuffo D., Enzi S. (1995) Impact of clouds of volcanic aerosols in Italy during the last 7 centuries. Natural. Haz. 11, 135-161. • Capasso G., Dongarrà G., Favara R., Francofonte S., Hauser S. (1993) Composition of bulk precipitation on Island of Vulcano (Aeolian I., Italy). Naturalista Siciliano Serie IV 17(1-2), 33-43 • Chandrawanshi C.K., Patel K.S. (1999): Fluoride deposition in central India. Environm. Monit. Assess. 55, 251 - 265. • Chester D.K., Duncan A.M., Guest J.E., Kilburn C.R.J. (1985) Mount Etna: The anatomy of a volcano. Chapman and Hall, London, 404 pp. • Comba P., Gianfagna A., Paoletti L. (2003). The pleural mesothelioma cases in Biancavilla are related to the new fluoro-edenite fibrous amphibole, Arch. Environ. Health. 58, 229–232. • Cronin S.J., Neall V.E., Lecointre J.A., Hedley M.J., Loganathan P. (2002). Environmental hazards of fluoride in volcanic ash: a case from Ruapehu volcano, New Zealand. J. Volcanol. Geoth. Res. 121, 271-291. • D'Alessandro W., Giammanco S., Parello F., Valenza M. (1997) CO2 output and δ13C(CO2) from Mount Etna as indicators of degassing of shallow asthenosphere. Bull. Volcanol. 58,455-458 • Davies F.B.M., Notcutt G. (1999). Accumulation of Volcanogenic fluorides by Lichens. Biomonitoring of vulcanogenic fluoride, Furnas Caldera, Sao Miguel, Azores. J. Volcanol. Geoth. Res., Vol. 92 p.209-214. • Davison A.W. (1986). Pathways of fluoride trasfer in terrestrial ecosystems. In:Coughtrey, Martin P.J, Unsworth, M.H. (eds) Pollutant Transport and Fate in Ecosystems, Backwell Scientific Publications, Oxford, pp. 193-210. • De Angelis M., and Legrand M., (1994) Origins and variations of fluoride in Greenland precipitation, J. Geophys. Res. 99, 1157- 1172. • De Temmerman L., Baeten H., Raekelboom E.L. (1985) Deposition velocity of ambient Fluorides on experimental grass cultures. Fluoride 8(4) 208-211 • De Temmerman L., Baeten H. (1986) Dry deposition of Fluorides on lime papers. Fluoride 9(3)105-154 • Delmelle P., Stix J., Baxter P., Garcia-Alvarez J., and Barquero J. (2002) Atmospheric dispersion, environmental effect and potential health hazard associated with the low-altitude gas plume of Masaya volcano Nicaragua. Bull. Volcanol. 64, 423-434. • Delmelle P. (2003) Environmental impacts of tropospheric volcanic gas plumes. In: Oppenheimer C., Pyle D.M., Barclay J. (eds) Volcanic degassing. Geological Society, London, Special Publication 213,381-399 • Delmelle P., Delfosse T., Delvaux B. (2003) Sulfate, chloride and fluoride retention in Andosols exposed to volcanic acid emissions. Environ. Pollut. 126 445-457 • Durand M., Grattan J., (1999). Extensive respiratory health effects of volcanogenic dry fog in 1783 inferred from European documentary sources. Environ. Geochem. Health 21, 371–376. • Durand M., Florkowski C., George B., Walmsley T., Weinstein P., Cole J. (2004). Elevated trace element output in urine following acute volcanic gas exposure. J. Volcanol. Geoth. Res. 134, 139– 148 • Egli, M. Durrenberger P., Fitze P. (2004) Spatio-temporal behaviour and mass balance of fluorine in forest soils near an aluminium smelting plant: short- and long-term aspects. Environ. Pollut. 129 195-207 • Eichler A., Schwikowski M. and Gaggeler H.W. (2000) An Alpine ice-core record of anthropogenic HF and HCl emissions. Geophys. Res. Lett. 27, 3225-3228. • Elias V., Tesar M., Buchtele J. (1995) Occult precipitation: sampling, chemical analysis and process modeling in the Sumava Mts. (Czech Republic) and in the Taunus Mts. (Germany). J. Hydrol. 166, 409-420. • Erisman J.W., Möls H., Fonteijn P., Geusebroek M., Draaijers G., Bleeker A., Van der Veen D. (2003). Field intercomparison of precipitation measurements performed within the framework of the Pan European Intensive Monitoring Program of EU/ICP Forest. Environ. Pollut. 125, 139-155 • Ferm M., and Svanberg P.A. (1998) Cost-efficient techniques for urban and background measurements of SO2 and NO2, Atmos. Environ., 32, 1377-1381. • Ferrara V., (1975). Idrogeologia del versante orientale dell’Etna. Proc. 3rd Internat. Symp. on Groundwaters Palermo, 1–5 November 1975, pp. 91–134. • Francis P., Burton M.R., Oppenheimer C. (1998) Remote measurements of volcanic gas compositions by solar occultation spectroscopy. Nature 396, 567-570 • Fridriksson S., (1983). Fluoride problems following volcanic eruption. In: Shupe J.L., Peterson H. B., Leone N.C., (Eds.) Fluorides, - Effect on vegetation, animals and humans. Pearagon Press,UT, 339-344. • Garrec J.P, Lounowski A., Plebin R, (1977) Impact of volcanic fluoride and SO2 emissions from moderate activity volcanoes on surrounding vegetation. Bull.Volcanol. 47(3), 491-496 • Garrec J.P., Abdulaziz P., Lavielle E., Vandevelde L. Plebin R., (1978) Fluoride, Calcium and aging in healthy and polluted fir trees (Albies Alba Mill). Fluoride 11(4), 187-197 • Garrec J.P., and Chopin S. (1982). Calcium accumulation in relation to fluoride pollution in plants. Fluoride 15(3), 144-149 • Garrec J.P., Plebin R., Faivre-Pierret R.X. (1984) The Influence of volcanic fluoride emissions on surrounding vegetation. Fluoride 10(4), 152-156 • Gauthier P.J.,. Le Cloarec M.F. (1998) Variability of alkali and heavy metal fluxes released by Mt. Etna volcano, Sicily, between 1991 and 1995, J Volcanol Geotherm Res 81, 311-326 • Georgsson G. and Petursson G., (1972). Fluorosis of sheep caused by the Hekla eruption in 1970. Fluoride, 5(2), 58-66. • Gerlach, T.M., and Graeber, E.J., (1985), Volatile budget of Kilauea Volcano: Nature, v. 313, p. 273-277. • Gianfagna A., Oberti R. (2001)Fluoro-edenite from Biancavilla (Catania, Sicily, Italy): Crystal chemistry of a new amphibole end-member. Am Mineral ;86, 1489 –1493. • Grattan J., Durand M. and Taylor S. (2003). Illness and Elevated Human Mortality in Europe Coincident with the Laki Fissure Eruption. in: Oppenheimer C., Pyle D.M. and Barclay J. (eds) Volcanic Degassing. Geological Society, London, Special Publications, 213, 401–414. • Halmer M.M., Schmincke H.U., Graf H.F., (2002). The annual volcanic gas input into the atmosphere, in particular into the stratosphere: a global data set for the past 100 years. J. Volcanol. Geoth. Res. 115 511-528 • Harding D., Miller J.M. (1982) The influence on rain chemistry of the Hawaiian volcano Kilauea. J. Geophys. Res. 87(C2), 1225-1230 • Hirn A., Nicolich R., Gallart J., Mireille L., Cernobori L., and ETNASEIS Scientific Group, (1997) Roots of Etna volcano in faults of great earthquakes, Earth Planet. Sci. Lett., 148, 171-191. • Horntvedt R. (1997) Accumulation of airborne fluorides in forest trees and vegetation, Europ. J. Forest Path. 27, 73–82. • Italiano F., Nuccio P.M., Percoraino G. Fumarolic gas output at the La Fossa di Vulcano crater. Acta Vulcanologica 1994;6, 39–40. • Kauranen P. (1978) Fluoride deposition in snow in the surroundings of a mixed fertilizer factory. Chemosphere; 6, 537-547. • Kierdorf H., Kierdorf U. (2000). Roe deer antlers as monitoring units for assessing temporal changes in environmental pollution by fluoride and lead in a German forest area over a 67-year period. Arch. Environ. Contam. Toxicol. 39, 1-6. • Klumpp A.; Domingos M.; Klumpp G.,; (1996) Assessment of vegetation risk by fluoride emissions from fertiliser industries at Cubatao, Brazil. Sci. Total Environ. 1996; 192, 219-228 • Le Guern F., Faivre-Pierret R.X., Garrec J.P. (1988) Atmospheric contribution of volcanic sulfur vapor and its influence on the surrounding vegetation. J. Volcanol. Geotherm. Res. 35, 173-178 • Liu Y. ed. (1995) Human exposure assessment of fluoride. An international study within the WHO/UNEP Human Exposure Assessment Location (HEAL) Programme. Beijing, Chinese Academy of Preventive Medicine, Institute of Environmental Health Monitoring, Technical Cooperation Centre of Fluoride/HEAL Programme, 64 pp. • Lund K., Ekstrand J., Boe J., Søstrand P., Kongurand J., (1997). Exposure to hydrogen fluoride: An experimental in human and concentrations of fluoride in plasma, symptoms and lung function. Occup. Environ. Med. 54, 32– 37. • Matschullat J., Maenhaut W., Zimmermann F., Fiebig J. (2000) Aerosol and bulk deposition trends in the 1990's, Eastern Erzgebirge, Central Europe. Atmos. Environ.; 34(19), 3213-3221. • Mayer R., Liess S., Lopes MIMS, Kreutzer K. (2000) Atmospheric pollution in a tropical rain forest: effects of deposition upon biosphere and hydrosphere II. Fluxes of chemicals and element budgets. Water Air Soil Pollut.; 121, 79-92. • Mccune D.C., Weistein L.H. (2002) in Bell J.N.B. and Treshow M. Air Pollution and Plant Life second edition by Wiley J. and Son Ltd 9, 163-171 • McQuaker N.R. and Gurney M. (1977). Determination of total fluoride in soil and vegetation using an alkali fusion-selective ion electrode technique. Anal. Chem. 49, 53-56. • Métrich N.(1990). Chlorine and fluorine in tholeiitic and alkaline lavas of Etna (Sicily), J. Volcanol. Geotherm. Res. 40 133–148. • NIOSH,(2003). Online NIOSH Pocket Guide to Chemical Hazards National Institute of Occupational Safety and Health. http://www.cdc.gov/niosh/. • Notcutt G., Davies F. (1989) Accumulation of volcanogenic fluoride by vegetation: Mt. Etna, Sicily. J. Volcanol. Geotherm. Res. 39, 329-333 • Notcutt G., Davies F. (1993) Dispersion of gaseous fluoride, island of Hawaii. J. Volcanol. Geoth. Res. 56, 125-131 • Notcutt G., Davies F.. (1999) Biomonitoring of vulcanogenic fluoride, Furnas Caldera, Sao Miguel, Azores. J. Volcanol. Geoth. Res. 92, 209-214. • Ogniben L., (1966). Lineamenti idrogeologici dell’Etna. Rivista Mineraria Siciliana 100–102, 151–174. • Oskarsson N., (1980). The interaction between volcanic gases and tephra: fluorine adhering to tephra of the 1970 Hekla eruption. J. Volcanol. Geotherm. Res. 8, 251-266. • Paoletti L., Batisti D., Bruno C., Di Paola M., Gianfagna A., Mastrantonio M., Nesti M., Comba P. (2000) Unusually high incidence of malignant pleural mesothelioma in a town of eastern Sicily: an epidemiological and environmental study. Arch. Environ. Health.;55, 392–398. • Pennisi M., Le-Cloarec M.F. (1998) Variations of Cl, F, and S in Mount Etna’s plume, Italy, between 1992 and 1995. Geophys. Res. Lett. 103, 5061-5066 • Perrott K.W., Smith L. and Inkson R.H.E. (1976) The reaction of fluoride with soils and soil minerals. Journal of Soil Science, 1976, 27, 58-67 • Polomski J., Fluhler H., and Blaser P. (1982) Accumulation of airborne fluoride in soils. J. Environ. Qual., 11, 457–461. • Preunkert S., Legrand M. Wagenbach D. (2001) Causes of enhanced fluoride levels in Alpine ice cores over the last 75 years: Implications for the atmospheric fluoride budget. J. Geophys. Res. 106(D12), 12,619-12,632 • Rowe G.L., Brantley S.L., Fernandez J.F., Borgia A. (1995) The chemical and hydrologic structure of Poas Volcano, Costa Rica. J. Volcanol. Geotherm. Res. 64(3-4), 233-267 • Saether O.M., Andreassen B.T., Semb A. (1995) Amounts and sources of fluoride in precipitation over southern Norway. Atmos. Environ. 29(15), 1785-1793 • Schwandner F.M., Seward T.M., Gize A.P., Hall P.A., Dietrich V.J. (2004) Diffuse emission of organic trace gases from the flank and the crater of a quiescent active volcano (Vulcano, Aeolian Islands, Italy). J. Geophys. Res. 109, D04301. • Skjelkvale B.L. (1994). Factors influencing fluoride concentrations in Norwegian Lakes. Water Air Soil Pollut. 77, 151-167. • Smith F.A., Hodge H.C. (1979). Airborne fluorides and man Part I.CRC Crit. Rev. Environ. Control 8, 293-371 • Symonds R.B., Rose W.I., Reed M.H., (1988). Contribution of Cl- and F-bearing gases to the atmosphere by volcanoes. Nature, 334, 415-418. • Tanguy J.C., Condomines M., Kieffer G. (1997) Evolution of the Mount Etna magma: Constraints on the present feeding system and eruptive mechanism. J. Volcanol. Geotherm. Res. 75, 221-250 • Thorarinsson S. (1979). On the damage caused by volcanic eruptions with special reference to tephra and gases. In: Sheets P.D., Grayson D.K. (eds.), Volcanic activity and human ecology. Academic Press, New York, p. 125-159. • Thordarson T.H., Self S. (2003) Atmospheric and environmental effects of the 1783-1784 Laki eruption: a review and reassessment. J. Geophys. Res. 108(D1), 4011 • Weinstein L.H. (1977) Fluoride and plant life. J. Occup. Med., 19, 49-78. • Weinstein L.H., Davison A. (2003) Fluoride in the Environment. CABI Publishing • Wellburn. A. (1997) Luftverschmutzung und Klimaanderung. Belin: Springer-Verlag. 289pp. • WHO (2002) Fluorides. Geneva, World Health Organization. Environmental Health Criteria 227, pp. 268. • Zevenbergen C., Van Reeuwijk L.P., Frapporti G., Louws R.J., Schuiling R.D. (1996). A simple method for defluoridation of drinking water at village level by adsorpition on Ando soil in Kenya. Sci. Total Environ. 188, 225-232en
dc.type.thesesPhD thesisen
dc.description.fulltextopenen
dc.contributor.authorBellomo, S.en
dc.contributor.departmentPhD Thesisen
item.openairetypethesis-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_46ec-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent01. Atmosphere-
crisitem.classification.parent01. Atmosphere-
crisitem.classification.parent01. Atmosphere-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent05. General-
Appears in Collections:Theses
Files in This Item:
File Description SizeFormat
PhD thesis Sergio Bellomo.pdf2.75 MBAdobe PDFView/Open
Show simple item record

Page view(s) 5

762
checked on Apr 17, 2024

Download(s) 1

20,198
checked on Apr 17, 2024

Google ScholarTM

Check