Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/344
DC FieldValueLanguage
dc.contributor.authorallInguaggiato, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.authorallTaran, Y.; Instituto de Geofisica, UNAM, Coyoacan, Mexico, D.F. 04510en
dc.contributor.authorallGrassa, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.authorallCapasso, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.authorallFavara, R.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.authorallVarley, N.; Facultad de Ciencias, Universidad de Colima, Colima, Mexicoen
dc.contributor.authorallFaber, E.; Federal Institute for Geosciences and Natural Resources, Stilleweg 2, Hannover, Germanyen
dc.date.accessioned2005-08-04T13:46:04Zen
dc.date.available2005-08-04T13:46:04Zen
dc.date.issued2004en
dc.identifier.urihttp://hdl.handle.net/2122/344en
dc.description.abstractThe Jalisco Block (JB) is a geologically and tectonically complex part of northwestern Mexico characterized by active subduction-type volcanism, rifting, and old stable structures. Thermal springs and groups of springs are widely distributed over JB. Bubbling gas from seven thermal springs located within different tectonic environments of the JB was analyzed for He, 20Ne, and N2 concentrations and d15N ratios. All gases are N2-dominant (>84%) with the exception of one sample (Rio´ Purificacio´n), which has a significant CH4 content (about 50%). All collected gas samples are relatively high in He, up to 1500 ppm vol and with 3He/4He values ranging from 0.6 to 4.5 Ra. All measured nitrogen isotope ratios are heavier than air with d15N values ranging from 0.5 to 5.0%. The relative N2 excess with respect to air-saturated water computed on the basis of N2 and 20Ne contents indicates the contribution of a nonatmospheric N2 source. All the samples show a good correlation between d15N and the relative excess of N2 with d15N +5.3% for the maximum N2 excess of 100%. Due to a presumed lack of seafloor sediment involved in the subduction process, such a d15N positive value seems to reflect the addition to the fluids of a heavy nitrogen originating from metamorphism processes of rocks occurring within the overlying continental crust.en
dc.format.extent532399 bytesen
dc.format.extent503 bytesen
dc.format.mimetypeapplication/pdfen
dc.format.mimetypetext/htmlen
dc.language.isoEnglishen
dc.publisher.nameAmerican Geophysical Unionen
dc.relation.ispartofGeochemistry, Geophysics, Geosystemsen
dc.relation.ispartofseries12/5(2004)en
dc.subjectbubbling gasesen
dc.subjectforearc regionen
dc.subjectJalisco Block-Mexicoen
dc.subjectnitrogen isotopesen
dc.subjectsubduction-related volcanismen
dc.titleNitrogen isotopes in thermal fluids of a forearc region (Jalisco Block, Mexico): evidence for heavy nitrogen from continental crusten
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber1-9en
dc.identifier.URLhttp://www.agu.org/en
dc.subject.INGV03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gasesen
dc.subject.INGV03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systemsen
dc.subject.INGV04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processesen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.01. Gasesen
dc.subject.INGV05. General::05.02. Data dissemination::05.02.01. Geochemical dataen
dc.identifier.doi10.1029/2004GC000767en
dc.relation.referencesAllégre, J. C., T. Staudacher, and P. Sarda (1986), Rare gas systematics: Formation of the atmosphere evolution and structure of the Earth’s mantle, Earth Planet. Sci. Lett., 81, 127–150. Bandy, W., V. Kostoglodov, A. Hurtado-Diaz, and M. Mena (1999), Structure of the southern Jalisco subduction zone, Mexico, as inferred from gravity and seismicity, Geofis. Int., 38, 127–136. Bebout, G. E., and M. L. Fogel (1992), Nitrogen-isotope compositions of metasedimentary rocks in the Catalina Schist,California: Implications for metamorphic devolatilization history, Geochim. Cosmochim. Acta, 56, 2839–2849. Cartigny, P., S. R. Boyd, J. W. Harris, and M. Javoy (1997),Diamonds and isotopic composition of mantle nitrogen, Terra Nova, 9, 175–179. Chavez, M., and K. B. Olsen (2002), Modeling of broadband strong ground motions observed for the 09/10/95, Mw8 Colima-Jalisco earthquake, paper presented at 3rd ACES (APEC Cooperation for Earthquake Simulation) Workshop, Asia Pac. Econ. Coop., Maui, Ha., 5–10 May. Eberhard, S., P. Gerling, and E. Faber (1994), Improved stable nitrogen isotope ratio measurements of natural gases, Anal. Chem., 66, 2614–2620. Fischer, T. P., W. F. Giggenbach, Y. Sano, and S. N. Williams (1998), Fluxes and sources of volatiles discharged from Kudryavy, a subduction zone volcano, Kurile Islands, Earth Planet. Sci. Lett., 160, 81–96. Fischer, T. P., D. R. Hilton, M. M. Zimmer, A. M. Shaw, Z. D. Sharp, and J. A. Walker (2002), Subduction and recycling of nitrogen along the Central American margin, Science, 297, 1154–1157. Giggenbach, W. F. (1992), The composition of gases in geothermal and volcanic systems as a function of tectonic setting, in Water Rock Interaction, vol. 7, edited by Y. K. Kharaka and A. Maest, pp. 873–878, A. A. Balkema, Brookfield, Vt. Giggenbach, W. F. (1996), Chemical composition of volcanic gases, in Monitoring and Mitigation of Volcanic Hazards, edited by R. Scarpa and R. I. Tilling, pp. 221–256, Springer-Verlag, New York. Inguaggiato, S., and A. Rizzo (2004), Dissolved helium isotope ratios in ground-waters: A new technique based on gas-water re-equilibration and its application to Stromboli volcanic system, Appl. Geochem., 19, 665–673. Jenden, P. D., I. R. Kaplan, R. J. Poreda, and H. Craig (1988),Origin of nitrogen-rich natural gases in the California Great valley: Evidence from helium carbon and nitrogen isotope ratios, Geochim. Cosmochim. Acta, 52, 851–861. Kita, I., K. Nikka, K. Nagao, S. Taguchi, and A. Koga (1993), Difference in N2/Ar ratio of magmatic gases from northeast and southwest Japan: New evidence for difference states of plate subduction, Geology, 21, 391–394. Krooss, B. M., R. Littke, B. Muller, J. Frielingsdorf, K. Schwochau, and E. F. Idiz (1995), Generation of nitrogen and methane from sedimentary organic matter: Implications on the dynamics of natural gas accumulations, Chem. Geol.,126, 291–318. Littke, R., B. Krooss, E. Idiz, and J. Frielingsdorf (1995), Molecular nitrogen in natural gas accumulations: Generation from sedimentary organic matter at high temperatures, AAPG Bull., 79, 410–430. Luhr, J. F. (1992), Slab-derived fluids and partial melting in subduction zones: Insights from two contrasting Mexican volcanoes (Colima and Ceboruco), J. Volcanol. Geotherm. Res., 54, 1–18. Marty, B., and F. Humbert (1997), Nitrogen and argon isotopes in oceanic basalts, Earth Planet. Sci. Lett., 152, 101–112. Matsuo, S., M. Suzuki, and Y. Mizutani (1978), Nitrogen to argon ratio in volcanic gases, in Terrestrial Rare Gases, vol. 3, edited by E. C. Alexander Jr. and M. Ozima, pp. 17–25, Cent. Acad., Tokyo. Melbourne, T., I. Carmichael, C. DeMets, K. Hudnut,O. Sanchez, J. Stock, G. Suarez, and F. Webb (1997), The geodetic signature of the M8.0 Oct. 9, 1995, Jalisco subduction earthquake, Geophys. Res. Lett., 24(6), 715–718. Mingram, B., and K. Brauer (2001), Ammonium concentration and nitrogen isotope composition in metasedimentary rocks from different tectonometamorphic units of the European Variskan Belt, Geochim. Cosmochim. Acta, 65, 275–287. Prasolov, E. M., E. S. Subbotin, and V. V. Tikhmirov (1990),Isotopic composition of molecular nitrogen in natural gases of USSR (in Russian), Geokhimiya, 7, 926–937. Sano, Y., N. Takahata, Y. Nishio, T. P. Fischer, and S. N. Williams (2001), Volcanic flux of nitrogen from the earth,Chem. Geol., 171, 263–271. Snyder, G., R. Poreda, U. Fehn, and A. Hunt (2003), Sources of nitrogen and methane in central American geothermal settings: Noble gas and 129I evidence for crustal and magmatic volatile components, Geochem. Geophys. Geosyst., 4(1), 9001, doi:10.1029/2002GC000363. Taran, Y., S. Inguaggiato, M. Marin, and L. M. Yurova (2002a), Geochemistry of fluids from submarine hot springs at Punta de Mita, Nayarit, Mexico, J. Volcanol. Geotherm. Res., 115, 329–338. Taran, Y., S. Inguaggiato, N. Varley, G. Capasso, and R. Favara (2002b), Helium and carbon isotopes in thermal waters of the Jalisco block, Mexico, Geofis. Int., 41, 459–466. Varley, N. R., and Y. Taran (2003), Degassing processes of Popocatepetl and Volcan de Colima, Mexico, in Volcanic Degassing, edited by C. Oppenheimer, D. M. Pyle, and J. Barclay, Geol. Soc. Spec. Publ., 213, 263–280. Zhu, Y., B. Shi, and C. Fang (2000), The isotopic compositions of molecular nitrogen: Implications on their origins in natural gas accumulations, Chem. Geol., 164, 321–330.en
dc.description.fulltextpartially_openen
dc.contributor.authorInguaggiato, S.en
dc.contributor.authorTaran, Y.en
dc.contributor.authorGrassa, F.en
dc.contributor.authorCapasso, G.en
dc.contributor.authorFavara, R.en
dc.contributor.authorVarley, N.en
dc.contributor.authorFaber, E.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.departmentInstituto de Geofisica, UNAM, Coyoacan, Mexico, D.F. 04510en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.departmentFederal Institute for Geosciences and Natural Resources, Stilleweg 2, Hannover, Germanyen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptInstitute of Geophysics, Universidad Nacional Autonoma de Mexico, Ciudad Universitario, Del. Coyocan, 04510 Mexico, DF, Mexico-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptFederal Institute for Geosciences and Natural Resources, Stilleweg 2, Hannover, Germany-
crisitem.author.orcid0000-0003-3726-9946-
crisitem.author.orcid0000-0003-3390-4316-
crisitem.author.orcid0000-0001-5043-792X-
crisitem.author.orcid0000-0002-0890-7948-
crisitem.author.orcid0000-0003-4588-2935-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent03. Hydrosphere-
crisitem.classification.parent03. Hydrosphere-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent05. General-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Inguaggiato et al., G3 2004.pdfMain article519.92 kBAdobe PDF
Redirect AGU.htmlRedirect-AGU503 BHTMLView/Open
Show simple item record

WEB OF SCIENCETM
Citations 50

19
checked on Feb 10, 2021

Page view(s)

157
checked on Apr 13, 2024

Download(s)

72
checked on Apr 13, 2024

Google ScholarTM

Check

Altmetric