Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/3307
DC FieldValueLanguage
dc.contributor.authorallCocco, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallBizzarri, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.authorallTinti, E.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.date.accessioned2007-12-14T11:32:22Zen
dc.date.available2007-12-14T11:32:22Zen
dc.date.issued2004en
dc.identifier.urihttp://hdl.handle.net/2122/3307en
dc.description.abstractWe study the dynamic traction and the slip velocity evolution within the cohesive zone during the propagation of a dynamic rupture using rate- and state-dependent constitutive laws. We solve the elastodynamic equation for a 2-D in-plane crack using a finite difference algorithm. We show that rate and state constitutive laws allow a quantitative description of the dynamic rupture growth. We confirm the findings of previous studies that slip weakening (SW) is a characteristic behavior of rate and state friction. Our simulations show that the state variable evolution controls the slip acceleration and the slip-weakening behavior. These modeling results help in understanding the physical interpretation of the breakdown process and the weakening mechanisms. We compare the time histories of slip velocity, state variable and total dynamic traction to investigate the temporal evolution of slip acceleration and stress drop during the breakdown time. Because the adopted analytical expression for the state variable evolution controls the slip velocity time histories, we test different evolution laws to investigate slip duration and the healing mechanisms. We show that the classic slowness or slip laws do not yield fast restrengthening or self-healing, although they appropriately describe rupture initiation, propagation and the long-term restrengthening during the interseismic period. Self-healing rupture mode, yielding to short slip durations, has been obtained for homogeneous faults by modifying the evolution law introducing a fast restrengthening of dynamic traction immediately after the weakening phase. In this study, we discuss how the direct effect of friction and the friction behavior at high slip rates affect the weakening and healing mechanisms.en
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofTectonophysicsen
dc.relation.ispartofseries/378 (2004)en
dc.subjectfault frictionen
dc.subjectearthquake ruptureen
dc.subjectrate- ad state dependent constitutive lawsen
dc.subjectcohesive zoneen
dc.subjectslip weakeningen
dc.subjectfracture energyen
dc.titlePhysical interpretation of the breakdown process using a rate- and state-dependent friction lawen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber241-262en
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamicsen
dc.identifier.doi10.1016/j.tecto.2003.09.015en
dc.relation.referencesAndrews, D.J., 1973. A numerical study of tectonic stress release by underground explosions. Bull. Seismol. Soc. Am. 63 (4), 1375– 1391. Andrews, D.J., 1976a. Rupture propagation with finite stress in antiplane strain. J. Geophys. Res. 81 (20), 3575–3582. Andrews, D.J., 1976b. Rupture velocity of plane strain shear cracks. J. Geophys. Res. 81 (32), 5679– 5687. Andrews, D.J., 2002. A fault constitutive relation accounting for thermal pressurization of pore fluid. J. Geophys. Res. 107 (B12), 2363. (doi:10.1029/2002JB001942) Andrews, D.J., Ben-Zion, Y., 1997. Wrinkle-like slip pulse on a fault between different materials. J. Geophys. Res. 102 (B1), 553– 571. Aochi, H., Fukuyama, E., 2002. Three-dimensional nonplanar simulation of the 1992 Landers earthquake. J. Geophys. Res. 107 (B2), 2035. (doi:10.1029/2000JB000061) Barenblatt, G.I., 1959. The formation of brittle cracks during brittle fracture. General ideas and hypotheses. Axially-symmetric cracks. Appl. Math. Mech. 23, 1273–1282. Beeler, N.M., Tullis, T.E., 1996. Self-healing slip pulses in dynamic rupture models due to velocity-dependent strength. Bull. Seismol. Soc. Am. 86 (4), 1130– 1148. Beeler, N.M., Tullis, T.E., Weeks, J.D., 1994. The roles of time and displacement in the evolution effect in rock friction. Geophys. Res. Lett. 21 (18), 1987–1990. Beroza, G., Mikumo, T., 1996. Short slip duration in dynamic rupture in the presence of heterogeneous fault properties. J. Geophys. Res. 101, 22449–22460. Bizzarri, A., Cocco, M., 2003. Slip-weakening behavior during the propagation of dynamic ruptures obeying to rate- and statedependent friction laws. J. Geophys. Res. 108 (B8), 2373. (doi:10.1029/2002JB002198) Bizzarri, A., Cocco, M., Andrews, D.J., Boschi, E., 2001. Solving the dynamic rupture problem with different numerical approaches and constitutive laws. Geophys. J. Int. 144, 656– 678. Boatwright, J., Cocco, M., 1996. Frictional constraints on crustal faulting. J. Geophys. Res. 101 (B6), 13895– 13909. Brodsky, E.E., Kanamori, H., 2001. Elastohydrodynamic lubrication of faults. J. Geophys. Res. 106, 16357– 16374. Cocco, M., Bizzarri, A., 2002. On the slip-weakening behavior of rate- and state-dependent constitutive laws. Geophys. Res. Lett. 29 (11), 1– 4. Cochard, A., Madariaga, R., 1994. Dynamic faulting under ratedependent friction. Pure Appl. Geophys. 142, 419–445. Cochard, A., Madariaga, R., 1996. Complexity of seismicity due to highly rate-dependent friction. J. Geophys. Res. 101, 25321– 25336. Cochard, A., Rice, J.R., 2000. Fault rupture between dissimilar materials: ill-posedness, regularization, and slip pulse response. J. Geophys. Res. 105, 891–907. Dieterich, J.H., 1979. Modeling of rock friction: 1. Experimental results and constitutive equations. J. Geophys. Res. 84, 2161–2168. Dieterich, J.H., 1986. A model for the nucleation of earthquake slip. In: Das, S., Boatwright, J., Scholz, C.H. (Eds.). Earthquake Source Mechanics, Geophysical Monograph. 37. Maurice Ewing Series, 6, Am. Geophys. Union. Washington, DC, pp. 37–47. Dieterich, J.H., 1992. Earthquake nucleation on faults with rate- and state-dependent strength. Tectonophysics 211, 115– 134. Dieterich, J.H., 1994. A constitutive law for rate of earthquake production and its application to earthquake clustering. J. Geophys. Res. 99, 2601–2618. Dieterich, J.H., Kilgore, B., 1994. Direct observations of frictional contacts: new insights for state-dependent properties. Pure Appl. Geophys. 143, 283– 302. Gu, J.C., 1984. Frictional resistance to accelerating slip. Pure Appl. Geophys. 122, 662– 679. Gu, Y., Wong, T.F., 1991. Effects of loading velocity, stiffness, and inertia on the dynamics of a single degree of freedom spring slider system. J. Geophys. Res. 96, 21677–21691. Guatteri, M., Spudich, P., 2000. What can strong-motion data tell us about slip-weakening fault-friction laws? Bull. Seismol. Soc. Am. 90 (1), 98–116. Guatteri, M., Spudich, P., Beroza, G.C., 2001. Infering rate and state friction parameters from a rupture model of the 1995 Hyogo- ken Nambu (Kobe) Japan earthquake. J. Geophys. Res. 106, 26511– 26521. Heaton, T.H., 1990. Evidence for and implications of self-healing pulses of slip in earthquake rupture. Phys. Earth Planet. Inter. 64, 1– 20. Ida, Y., 1972. Cohesive force across the tip of a longitudinal-shear crack and Griffith’s specific surface energy. J. Geophys. Res. 77, 3796–3805. Ide, S., Takeo, M., 1997. Determination of constitutive relations of fault slip based on seismic wave analysis. J. Geophys. Res. 102 (B12), 27379–27391. Lapusta, N., Rice, J.R., 2003. Nucleation and early seismic propagation of small and large events in a crustal earthquake model. J. Geophys. Res. 108 (B4), 2205. (doi:10.1029/2001JB000793) Linker, M.F., Dieterich, J.H., 1992. Effects of variable normal stress on rock friction: observations and constitutive equations. J. Geophys. Res. 97, 4923–4940. Mair, K., Marone, C.J., 1999. Friction of simulated fault gauge for a wide range of velocities and normal stresses. J. Geophys. Res. 104, 28899–28914. Marone, C.J., 1998. Laboratory-derived friction laws and their application to seismic faulting. Annu. Rev. Earth Planet. Sci. 26, 643– 696. Marone, C.J., Kilgore, B., 1993. Scaling of the critical slip distance for seismic faulting with shear strain in fault zones. Nature 362, 618– 621. Nakatani, M., 2001. Conceptual and physical clarification of rate and state friction: frictional sliding as a thermally activated rheology. J. Geophys. Res. 106 (B7), 13347– 13380. Nielsen, S., Carlson, J.M., 2000. Rupture pulse characterization: self-healing, self-similar, expanding solutions in a continuum model of fault dynamics. Bull. Seismol. Soc. Am. 90, 1480– 1497. Nielsen, S., Madariaga, R., in press. On the self-healing fracture mode. Bull. Seismol. Soc. Am. Nielsen, S., Carlson, J.M., Olsen, K.B., 2000. Influence of friction and fault geometry on earthquake rupture. J. Geophys. Res. 105, 6069– 6088. Ohnaka, M., 1996. Nonuniformity of the constitutive law parameters for shear rupture and quasistatic nucleation to dynamic rupture: a physical model of earthquake generation processes. Proc. Natl. Acad. Sci. U. S. A. 93, 3795–3802. Ohnaka, M., Shen, L.F., 1999. Scaling of the shear rupture process from nucleation to dynamic propagation: implications of geometric irregularity of the rupturing surfaces. J. Geophys. Res. 104, 817– 844. Ohnaka, M., Yamashita, T., 1989. A cohesive zone model for dynamic shear faulting based on experimentally inferred constitutive relation and strong motion source parameters. J. Geophys. Res. 94, 4089–4104. Okubo, P.G., 1989. Dynamic rupture modeling with laboratoryderived constitutive relations. J. Geophys. Res. 94 (B9), 12321– 12335. Okubo, P.G., Dieterich, J.H., 1984. Effects of physical fault properties on frictional instabilities produced on simulated faults. J. Geophys. Res. 89, 5817– 5827. Palmer, A.C., Rice, J.R., 1973. The growth of slip surfaces in the progressive failure of over-consolidated clay. Proc. R. Soc. Lond., Ser. A 332, 527– 548. Perrin, G., Rice, J.R., Zheng, G., 1995. Self-healing slip pulse on a frictional surface. J. Mech. Phys. Solids 43, 1461– 1495. Rice, J.R., 1993. Spatio-temporal complexity of slip on a fault. J. Geophys. Res. 98, 9885– 9907. Roy, M., Marone, C.J., 1996. Earthquake nucleation on model faults with rate- and state-dependent friction: effects of inertia. J. Geophys. Res. 101, 13919– 13932. Ruina, A.L., 1980. Friction laws and instabilities: a quasistatic analysis of some dry frictional behavior, PhD Thesis in Engineering at Brown University, Providence, RI. Ruina, A.L., 1983. Slip instability and state variable friction laws. J. Geophys. Res. 88 (B12), 10359– 10370. Scholz, C.H., 2002. The Mechanics of Earthquake and Faulting, 2nd edition. Cambridge Univ. Press, Cambridge. Segall, P., Rice, J.R., 1995. Dilatancy, compaction and slip instability on a fluid infiltrated fault. J. Geophys. Res. 100, 22155– 22171. Sleep, N.H., 1997. Application of a unified rate and state friction theory to the mechanics of a fault zones with strain locations. J. Geophys. Res. 102, 2875– 2895. Weertman, J., 1980. Unstable slippage across a fault that separates elastic media of different elastic constants. J. Geophys. Res. 85, 1455– 1461. Zheng, G., Rice, J.R., 1998. Conditions under which velocity weakening friction allows a self-healing versus a crack like mode of rupture. Bull. Seismol. Soc. Am. 88, 1466– 1483.en
dc.description.obiettivoSpecifico3.1. Fisica dei terremotien
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorCocco, M.en
dc.contributor.authorBizzarri, A.en
dc.contributor.authorTinti, E.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.orcid0000-0001-6798-4225-
crisitem.author.orcid0000-0001-8313-4124-
crisitem.author.orcid0000-0002-6942-3592-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Coccoetal_2004_online.pdfPublished paper2.78 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

11
checked on Feb 10, 2021

Page view(s)

117
checked on Apr 17, 2024

Download(s)

23
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric