Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/329
DC FieldValueLanguage
dc.contributor.authorallAiuppa, A.; Dipartimento CFTA, Universita` di Palermoen
dc.contributor.authorallFederico, C.; Dipartimento CFTA, Universita` di Palermoen
dc.contributor.authorallGiudice, G.; Dipartimento CFTA, Universita` di Palermoen
dc.contributor.authorallGurrieri, S.; Dipartimento CFTA, Universita` di Palermoen
dc.contributor.authorallPaonita, A.; Dipartimento CFTA, Universita` di Palermoen
dc.contributor.authorallValenza, M.; Dipartimento CFTA, Universita` di Palermoen
dc.date.accessioned2005-08-01T14:07:50Zen
dc.date.available2005-08-01T14:07:50Zen
dc.date.issued2004en
dc.identifier.urihttp://hdl.handle.net/2122/329en
dc.description.abstractThis paper deals with sulfur, chlorine and fluorine abundances in the eruptive volcanic plume of the huge October 2002– January 2003 eruption of Mount Etna, aiming at relating the relevant compositional variations observed throughout with changes in eruption dynamics and degassing mechanisms. The recurrent sampling of plume acidic volatiles by filter-pack methodology revealed that, during the study period, S/Cl and Cl/F ratios ranged from 0.1–6.8 and 0.9–5.6, respectively. Plume S/Cl ratios increased by a factor of f10 as volcanic activity drifted from paroxysmal lava fountaining (mid- and late November) to passive degassing and minor effusion (early January), and then decreased to the low values (S/Cl = 0.1) typical of the final stages of the eruption. Parallel variations in chlorine to fluorine ratios were also observed. A theoretical model is proposed for quantitative interpretation of these changes in plume composition. The model calculates the composition of a volatile phase exsolving from an ascending Etna magma, based on knowledge of solubilities and abundances in the undegassed melt of sulfur and halogens [T.M. Gerlach, EOS 72 (1991), 249, 254–255]. According to this model, degassing of Etnean basaltic melt at high pressures and depths (>100 MPa, 3 km) is likely to release a CO2+H2O-rich vapor phase with S/Cl molar ratios f1. Extensive sulfur and chlorine degassing from the melt would take place at shallower depth ( P < 20 MPa, 0.6 km), with S/Cl ratios in the vapor phase increasing as pressure drops to 0.1 MPa. Comparisons between model compositions and volcanic plume data demonstrate that the chemical trends observed during the eruption may be explained by increased degassing due to depressurization of a basaltic magma batch ascending toward the surface.en
dc.format.extent532 bytesen
dc.format.extent728204 bytesen
dc.format.mimetypetext/htmlen
dc.format.mimetypeapplication/pdfen
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofEarth and Planetary Science Lettersen
dc.relation.ispartofseries222 (2004)en
dc.subjectmagmatic degassingen
dc.subjectvolcanic plumeen
dc.subjectbasaltic eruptionen
dc.titlePlume chemistry provides insights into mechanisms of sulfur and halogen degassing in basaltic volcanoesen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber469-483en
dc.identifier.URLhttp://www.elsevier.com/wps/find/en
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoringen
dc.identifier.doidoi:10.1016/j.epsl.2004.03.020en
dc.relation.referencesP.M. Nuccio, A. Paonita, Magmatic degassing of multicomponent vapors and assessment of magma depth: application to Vulcano Island (Italy), Earth Planet. Sci. Lett. 193 (2001) 467–481. [2] T.M. Gerlach, E.J. Graeber, Volatile budget of Kilauea volcano, Nature 313 (1985) 273– 277. [3] L.P. Greenland, W.I. Rose, J.B. Stokes, An estimate of gas emissions and magmatic gas content from Kilauea volcano, Geochim. Cosmochim. Acta 49 (1985) 125– 129. [4] R. Symonds, W.I. Rose, M.H. Reed, Contribution of Cl- and F-bearing gases to the atmosphere by volcanoes, Nature 334 (1988) 415– 418. [5] R.E. Stoiber, S.N. Williams, B. Huebert, Annual contribution of sulphur dioxide to the atmosphere by volcanoes, J. Volcanol. Geotherm. Res. 33 (1987) 1–8. [6] P. Allard, J. Carbonelle, D. Dajlevic, J. Le Bronec, P. Morel,M.C. Robe, J.M. Maurenas, R. Faivre-Pierret, D. Martin, J.C. Sabroux, P. Zettwoog, Eruptive and diffuse emissions of CO2 from Mount Etna, Nature 351 (1991) 387– 391. [7] P. Allard, N. Carbonelle, N. Me´trich, H. Loyer, P. Zettwoog, Sulphur output and magma degassing budget of Stromboli volcano, Nature 368 (1994) 326– 330. [8] T. Caltabiano, R. Romano, G. Budetta, SO2 flux measurements at Mount Etna, Sicily, J. Geophys. Res. 99 (D6)(1994) 12809– 12819. [9] P. Allard, Endogenous magma degassing and storage at Mount Etna, Geophys. Res. Lett. 24 (1997) 2219– 2222. [10] P. Francis, M.R. Burton, C. Oppenheimer, Remote measurements of volcanic gas compositions by solar occultation spectroscopy, Nature 396 (1998) 567– 570. [11] A.T. Anderson, Chlorine, sulfur and water in magmas and oceans, Geol. Soc. Amer. Bull. 85 (1974) 509– 531. [12] D.M. Harris, A.T. Anderson, Concentrations, sources, and losses of H2O, CO2 and S in Kilauean basalt, Geochim. Cosmochim. Acta 47 (1983) 1139– 1150. [13] J.D. Devine, H. Sigurdsson, A.N. Davis, Estimates of sulfur and chlorine yields to the atmosphere by volcanic eruptions and potential climatic effects, J. Geophys. Res. 89 (1984) 6309– 6325. [14] N. Me´trich, R. Clocchiatti, Melt inclusion investigations of the volatile behavior in historic alkali basaltic magmas of Etna, Bull. Volcanol. 51 (1989) 185– 198. [15] J.E. Dixon, D.A. Clague, E.M. Stolper, Degassing history of water and sulfur in submarine lavas from Kilauea Volcano, Hawaii, J. Geol. 99 (1991) 371–394. [16] M.C. Johnson, A.T. Anderson, M.J. Rutherford, Pre-eruptive volatile contents of magmas, in: M.R. Carroll, J.R. Halloway (Eds.), Volatiles in Magmas, Rev. in Mineralogy, vol. 30 1994,pp. 281– 330. [17] Th. Thordarson, S. Self, N. Oskarsson, T. Hulsebosch, Sulfur, chlorine and fluorine degassing and atmospheric loading by the 1783– 1784 AD Laki (Skaftar Fires) eruption in Iceland,Bull. Volcanol. 58 (1996) 205– 225. [18] N. Metrich, M.J. Rutherford, Low pressure crystallization paths of H2O-saturated basaltic hawaiitic melts from Mount Etna: implications for open system degassing of basaltic volcanoes, Geochim. Cosmochim. Acta 62 (1998) 1195–1205. [19] R.E. Stoiber, L.L. Malinconico, S.N. Williams, in: H. Tazieff, J.-C. Sabroux (Eds.), Forecasting Volcanic Events, 1980,pp. 425– 444. [20] G.J.S. Bluth, C.C. Schnetzler, A.J. Kreuger, L.S. Walter, The contribution of explosive volcanism to global sulfur dioxide concentrations, Nature 366 (1993) 327– 329. [21] S.N. Williams, S.J. Schaefer, V. Calvache, D. Lopez, Global carbon dioxide emission to the atmosphere by volcanoes, Geochim. Cosmochim. Acta 56 (1992) 1765–1770. [22] R.E. Stoiber, S.N. Williams, B. Huebert, Sulphur and halogen gases at Masaya caldera complex, Nicaragua: total flux and variations with time, J. Geophys. Res. 91 (1986) 12215– 12231. [23] T.H. Miller, W.H. Zoeller, B.M. Crowe, D. Finnegan, Variations in trace metal and halogen ratios in magmatic gases through an eruptive cycle of the Pu’u O’o vent, Kilauea, Hawaii: July –August 1985, J. Geophys. Res. 95 (1990)12607– 12615. [24] R. Symonds, W.I. Rose, T.M. Gerlach, P.H. Briggs, R.S. Harson, Evaluation of gases, condensates, and SO2 emissions from Augustine volcano, Alaska: the degassing of a Cl-rich volcanic system, Bull. Volcanol. 52 (1990) 355– 374. [25] R. Symonds, W.I. Rose, G.J.S. Bluth, T.M. Gerlach, Volcanic gas studies: methods, results and applications, in: M.R. Carroll, J.R. Halloway (Eds.), Volatiles in Magmas, Rev. in Mineralogy, vol. 30 1994, pp. 1 –66. [26] R. Symonds, Y. Mizutani, P.H. Briggs, Long term geochemical surveillance of fumaroles of Showa-Shinzan dome, Usu volcano, Japan, J. Volcanol. Geotherm. Res. 73 (1996)177– 211. [27] F. Goff, C.J. Janik, H. Delgado, C. Werner, D. Counce, J.A. Stimac, C. Ciebe, S.P. Love, S.N. Williams, T. Fischer, L. Johnson, Geochemical surveillance of magmatic volatiles at Popocate´petl volcano, Mexico, GSA Bull. 110 (1998)695–710. [28] M. Pennisi, M.F. Le-Cloarec, Variations of Cl, F, and S in Mount Etna’s plume, Italy, between 1992 and 1995, Geophys. Res. Lett. 103 (1998) 5061–5066. [29] M. Edmonds, D. Pyle, C. Oppenheimer, A model for degassing at the Soufrie`re Hills volcano, Montserrat, West Indies, based on geochemical data, Earth. Planet. Sci. Lett. 186 (2001) 159– 173. [30] A. Aiuppa, C. Federico, A. Paonita, G. Pecoraino, M. Valenza, S, Cl and F degassing as an indicator of volcanic dynamics: the 2001 eruption of Mount Etna, Geophys. Res. Lett. 29-11 (2002) S4-1/S4-4. [31] W.F. Giggenbach, Chemical composition of volcanic gases, in: R. Scarpa, R.I. Tilling (Eds.), Monitoring and Mitigation of Volcanic Hazards, Springer Verlag, Berlin-Heidelberg, 1996. [32] P.V. Hobbs, L.F. Radke, J.H. Lyons, R.J. Ferek, D.J. Coffman, Airborne measurements of particle and gas emissions from the 1990 volcanic eruption of Mount Redoubt, J. Geophys. Res. 96 (1991) 18735– 18752. [33] G. Zreda-Gostyka, P.R. Kyle, D.L. Finnegan, Chlorine, fluorine from Mount Erebus, Antarctica, and estimated contributions to the Antarctic atmosphere, Geophys. Res. Lett. 20 (1993) 1959– 1962. [34] P.W. Francis, A. Maciejewski, C. Chaffin, C. Oppenheimer, T. Caltabiano, SO2 and HCl ratios in the plumes of Mount Etna and Vulcano determined by Fourier Transform spectroscopy, Geophys. Res. Lett. 22 (1995) 1717– 1720. [35] K.A. McGee, T.M. Gerlach, Airborne volcanic plume measurements using an FTIR spectrometer, Kilauea volcano,Hawaii, Geophys. Res. Lett. 25 (1998) 615– 618. [36] C. Oppenheimer, P. Francis, J. Stix, Depletion rates of SO2 in tropospheric volcanic plumes, Geophys. Res. Lett. 25 (1998) 12249– 12254. [37] M.R. Carroll, J.D. Webster, Solubilities of sulfur, noble gases, nitrogen, chlorine and fluorine in magmas, in: M.R. Carroll, J.R. Halloway (Eds.), Volatiles in Magmas, Rev. in Mineralogy, vol. 30 1994, pp. 231– 279. [38] J.D. Webster, R.J. Kinzler, E.A. Mathez, Chloride and water solubility in basalt and andesite melts and implications for magmatic degassing, Geochim. Cosmochim. Acta 63 (1999) 729–738. [39] J.R. Holloway, J.G. Blank, Application of experimental results to C–O–H species in natural melts, in: M.R. Carroll, J.R. Halloway (Eds.), Volatiles in Magmas, Rev. in Mineralogy, vol. 30 1994, pp. 187– 230. [40] J.E. Dixon, E. Stolper, An experimental study of water and carbon dioxide solubilities in mid-ocean ridge basaltic liquids. Part II: applications to degassing, J. Petrol. 36 (1995) 1633– 1646. [41] P. Papale, Modeling of the solubilities of a two-component H2O+CO2 fluid in silicate liquids, Am. Mineral. 84-4 (1999) 477–492. [42] N. Me´trich, R. Clocchiatti, M. Mosbah, M. Chaussidon, The 1989–1990 activity of Etna magma mingling and ascent of H2O–Cl– S-rich basaltic magma. Evidence from melt inclusions, J. Volcanol. Geotherm. Res. 59 (1993) 131– 144. [43] D.K. Chester, A.M. Duncan, J.E. Guest, C.R.J. Kilburn, Mount Etna, The Anatomy of a Volcano, Chapman and Hall, London, 1985. [44] N. Me´trich, Chlorine and fluorine in tholeiitic and alkaline lavas of Etna (Sicily), J. Volcanol. Geotherm. Res. 40 (1990) 133– 148. [45] A. Aiuppa, G. Dongarra`, C. Federico, G. Pecoraino, M. Valenza, Degassing of trace volatile metals during the 2001 eruption of Etna, in: A. Robock, C. Oppenheimer (Eds.), Volcanism and the Earth’s Atmosphere, AGU Geophysical Monographs 139 (2004) 41– 54. [46] D.A. Johnson, D.H.F. Atkins, An airborne system for the sampling and analysis of sulphur dioxide and atmospheric aerosols, Atmos. Environ. 9 (1975) 825– 829. [47] D.L. Finnegan, J.P. Kotra, D.M. Hermann, W.H. Zoeller, The use of 7LiOH-impregnated filters for the collection of acidic gases and analysis by instrumental neutron activation analysis, Bull. Volcanol. 51 (1989) 83–87. [48] INGV-Sezione di Catania, Internal reports available at www.ct.ingv.it, 2003. [49] N. Bruno, T. Caltabiano, V. Longo, G.G. Salerno, Misure del flusso di SO2 dall’Etna con spettrometro COSPEC, Comunicato INGV-Sezione di Catania, February 13 2003 (available at www.ct.ingv.it), 2003. [50] P. Allard, N. Bruno, M. Burton, T. Caltabiano, D. Condarelli, V. Longo, F. Mure´, Remote sensing gas measurements during Etna’s July– August 2001 eruption, Paper Presented at Assemblea Annuale GNV-INGV, Rome, 9 – 11 October, 2001. [51] INGV-CT, Multidisciplinary approach yields insights into Mount Etna eruption, EOS, Trans. AGU 82 (2001) 655– 657. [52] L. Wilson, J.W. Head III, Ascent and eruption of basaltic magmas on Earth and the Moon, J. Geophys. Res. 86 (B4)(1981) 2971– 3001. [53] C. Jaupart, Physical model of volcanic eruptions, Chem. Geol. 128 (1996) 217–227. [54] C. Jaupart, S. Vergniolle, Laboratory models of hawaiian and strombolian eruptions, Nature 331 (1988) 58–60. [55] C. Jaupart, S. Vergniolle, The generation and collapse of a foam layer at the roof of a basaltic magma chamber, J. Fluid Mech. 203 (1989) 347– 380. [56] R. Clocchiatti, J. Weisz, M. Mosbah, J.C. Tanguy, Coexistence de ‘‘verres’’ alcalins et thole´iitiques sature´s en CO2 dans les olivines des hyaloclastites d’Aci Castello (Etna, Sicilie, Italie). Arguments en faveur d’un manteau anormal et d’un re´servoir profond, Acta Vulcanol. 2 (1992) 161– 173. [57] V. Kamenetsky, R. Clocchiatti, Primitive magmatism of Mount Etna: insights from mineralogy and melt inclusions, Earth Planet. Sci. Lett. 142 (1996) 553– 572. [58] A. Caracausi, F. Italiano, P.M. Nuccio, A. Paonita, A. Rizzo, Evidence of deep magma degassing and ascent by geochemistry of peripheral gas emissions at Mount Etna (Italy): assessment of the magmatic reservoir pressure, J. Geophys. Res. 108 (B10) (2003) doi:10.1029/2002JB002095. [59] P.M. Nuccio, A. Paonita, Investigation of the noble gas solubility in H2O–CO2 bearing silicate liquids at moderate pressure II: the Extended Ionic Porosity (EIP) model, Earth Planet. Sci. Lett. 183 (2000) 499–512. [60] S.R. Poulson, H. Ohmoto, An evaluation of the solubility of sulfide sulfur in silicate melts from experimental data and natural samples, Chem. Geol. 85 (1990) 57–75. [61] P.Wallace, I.S.E. Carmichael, Sulfur in basaltic magmas, Geochim. Cosmochim. Acta 56 (1992) 1863– 1874. [62] T. Katsura, S. Nagashima, Solubility of sulfur in some magmas at 1 atmosphere, Geochim. Cosmochim. Acta 38 (1974)517– 531. [63] N. Me´trich, R. Clocchiatti, Sulfur abundance and its speciation in oxidized alkaline melts, Geochim. Cosmochim. Acta 60 (1996) 4151– 4160. [64] R.F. Wendlandt, Sulfide saturation of basalt and andesite melts at high pressure and temperature, Am. Mineral. 67 (1982)877– 885. [65] M.R. Carroll, M.J. Rutherford, The stability of igneous anhydrite:experimental results and implications for sulfur behaviour in the 1982 El Chichon trachyandesite and other evolved magmas, J. Petrol. 28 (1987) 781–801. [66] J.F. Luhr, Experimental phase relations of water and sulfursaturated arc magmas and the 1982 eruption of El Chichon volcano, J. Petrol. 31 (1990) 1071–1114. [67] R. Moretti, P. Papale, G. Ottonello, A model for the saturation of C–O–H–S fluids in silicate melts, in: C. Oppenheimer, D.M. Pyle, J. Barclay (Eds.), Volcanic Degassing, Geological Society of London Special Publication 213 (2003) 81–101. [68] I.A. Kilinc, C.W. Burnham, Partitioning of chloride between a silicate melt and coexisting aqueous phase from 2 to 8 kilobars, Econ. Geol. 67 (1972) 231– 235. [69] J.D. Webster, J.R. Holloway, Experimental constraints on the partitioning of Cl between topaz rhyolite melt and H2O and H2O+CO2 fluids. New implications for granitic differentiation and ore deposition, Geochim. Cosmochim. Acta 52 (1988) 2105–2901. [70] H. Shinohara, J.R. Iiyama, S. Matsuo, partitioning of chloride compounds between silicate melt and hydrothermal solutions. I: Partitioning of NaCl– KCl, Geochim. Cosmochim. Acta 53 (1989) 2617–2630. [71] N. Me´trich, M.J. Rutherford, Experimental study of chlorine behavior in hydrous silicic melts, Geochim. Cosmochim. Acta 56 (1992) 607–616. [72] J.D. Webster, Chloride solubility in felsic melts and the role of chloride in magmatic degassing, J. Petrol. 38 (1997)1793– 1807. [73] B. Iwasaki, T. Katsura, The solubility of hydrogen chloride in volcanic rock melts at total pressure of one atmosphere and at temperatures of 1200 jC and 1290 jC under anhydrous conditions, Bull. Chem. Soc. Jpn. 40 (1967) 554–561. [74] S.D. Malinin, I.F. Kravchuk, F. Delbove, Chloride distribution between phases in hydrated and dry chloride-aluminosilicate melt system as a function of phase composition, Geochem. Int. 26 (1989) 32–38. [75] S. Signorelli, M.R. Carroll, Solubility and fluid-melt partitioning of Cl in hydrous phonolitic melts, Geochim. Cosmochim. Acta 64 (2000) 2851– 2862.en
dc.description.fulltextpartially_openen
dc.contributor.authorAiuppa, A.en
dc.contributor.authorFederico, C.en
dc.contributor.authorGiudice, G.en
dc.contributor.authorGurrieri, S.en
dc.contributor.authorPaonita, A.en
dc.contributor.authorValenza, M.en
dc.contributor.departmentDipartimento CFTA, Universita` di Palermoen
dc.contributor.departmentDipartimento CFTA, Universita` di Palermoen
dc.contributor.departmentDipartimento CFTA, Universita` di Palermoen
dc.contributor.departmentDipartimento CFTA, Universita` di Palermoen
dc.contributor.departmentDipartimento CFTA, Universita` di Palermoen
dc.contributor.departmentDipartimento CFTA, Universita` di Palermoen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptDiSTeM, Universit a degli Studi di Palermo, Palermo, Italy-
crisitem.author.orcid0000-0002-0254-6539-
crisitem.author.orcid0000-0001-8887-2580-
crisitem.author.orcid0000-0002-9410-4139-
crisitem.author.orcid0000-0003-4085-0440-
crisitem.author.orcid0000-0001-9124-5027-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
Redirect.htmlRedirect532 BHTMLView/Open
Aiuppa et al., Earth Planet. Science Lett. 2004.pdfMain Article711.14 kBAdobe PDF
Show simple item record

Page view(s) 20

274
checked on Apr 17, 2024

Download(s) 50

109
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric