Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/3130
DC FieldValueLanguage
dc.contributor.authorallPiatanesi, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallLorito, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.date.accessioned2007-12-12T15:21:24Zen
dc.date.available2007-12-12T15:21:24Zen
dc.date.issued2007-01en
dc.identifier.urihttp://hdl.handle.net/2122/3130en
dc.description.abstractThe aim of this work is to infer the slip distribution and rupture velocity along the rupture zone of the 26 December 2004 Sumatra–Andaman earthquake from available tide gage records of the tsunami. We selected waveforms from 14 stations, distributed along the coast of the Indian Ocean. Then we subdivided the fault plane into 16 subfaults (both along strike and downdip) following the geometry and mechanism proposed by Banerjee et al. (2005) and computed the corresponding Green’s functions by numerical solution of the shallow-water equations through a finitedifference method. The slip distribution and rupture velocity were determined simultaneously by means of a simulated annealing technique. We compared the recorded and synthetic waveforms in the time domain, using a cost function that is a trade-off between the L1 and L2 norms. Preliminary tests on a synthetic dataset, together with a posteriori statistical analysis of the model ensemble enabled us to assess the effectiveness of the method and to quantify the model uncertainty. The main finding is that the best source model features a nonuniform distribution of coseismic slip, with high slip values concentrated into three main patches: the first is located in the southern part of the fault, off the coast of the Aceh Province; the second between 6.5 N and 11 N; and the third at depth, between 11 N and 14 N. Furthermore, we estimated that the rupture propagated at an average speed of 2.0 km/sec.en
dc.language.isoEnglishen
dc.publisher.nameSeismological Society of Americaen
dc.relation.ispartofBulletin of the Seismological Society of Americaen
dc.relation.ispartofseries1A/97(2007)en
dc.subjectSumatraen
dc.subjectearthquakeen
dc.subjectinversionen
dc.subjecttsunamien
dc.titleRupture Process of the 2004 Sumatra–Andaman Earthquake from Tsunami Waveform Inversionen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberS223-S231en
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamicsen
dc.identifier.doi10.1785/0120050627en
dc.relation.referencesAmmon, C. J., C. Ji, H. K. Thio, D. Robinson, S. Ni, V. Hjorleifsdottir, H. Kanamori, T. Lay, S. Das, D. Helmberger, G. Ichinose, J. Polet, and D. Wald (2005). Rupture process of the 2004 Sumatra–Andaman earthquake, Science 308, 1133–1139. Banerjee, P., F. F. Pollitz, and R. Bu¨rgmann (2005). The size and duration of the Sumatra–Andaman earthquake from far-field static offsets, Science 308, 1769–1772. Banerjee, P., F. F. Pollitz, B. Nagarajan, and R. Bu¨rgmann (2007). Coseismic slip distributions of the 26 December 2004 Sumatra–Andaman and 28 March 2005 Nias earthquakes from Global Positioning System (GPS) static offsets, Bull. Seism. Soc. Am. 97, no. 1A, S86–S102. Bilham, R. (2005). A flying start, then a slow slip, Science 308, 1126–1127. de Groot-Hedlin, C. D. (2005). Estimation of the rupture length and velocity of the Great Sumatra earthquake of Dec 26, 2004 using hydroacoustic signals, Geophys. Res. Lett. 32, L11303, doi 10.1029/2005GL022695. Fine, I. V., A. B. Rabinovich, and R. E. Thomson (2005). The dual source region for the 2004 Sumatra tsunami, Geophys. Res. Lett. 32, L16602, doi 10.1029/2005GL023521. Fujii, Y., and K. Satake (2007). Tsunami source of 2004 Sumatra–Andaman earthquake inferred from tide-gauges and satellite data, Bull. Seism. Soc. Am. 97, no. 1A, S192–S207. Geist, E. (1999). Local tsunamis and earthquake source parameters, Adv. Geophys. 39, 117–209. Geist, E., V. V. Titov, D. Arcas, F. P. Pollitz, and S. L. Bilek (2007). Implications of the 26 December 2004 Sumatra–Andaman earthquake on tsunami forecast and assessment models for great subduction zone earthquakes, Bull. Seism. Soc. Am. 97, no. 1A, S249–S270. Guilbert, J., J. Vergoz, E. Scissele´, A. Roueff, and Y. Cansi (2005). Use of hydroacoustic and seismic arrays to observe rupture propagation and source extent of the MW 9.0 Sumatra earthquake, Geophys. Res. Lett. 32, L15310, doi 10.1029/2005GL022966. Heinrich, P., A. Piatanesi, and H. Hebert (2001). Numerical modelling of tsunami generation and propagation from submarine slumps: the 1998 Papua New Guinea event, Geophys. J. Int. 145, 97–111. Hirata, K., K. Satake, Y. Tanioka, T. Kuragano, Y. Hasegawa, Y. Hayashi, and N. Hamada (2006). The 2004 Indian ocean tsunami: tsunami source model from satellite altimetry, Earth Planets Space 58, 195– 201. Ishii, M., P. M. Shearer, H. Houston, and J. Vidale (2005). Extent, duration and speed of the 2004 Sumatra–Andaman earthquake imaged by the Hi-Net array, Nature 435, 933–936. Ji, C., D. J. Wald, and D. V. Helmberger (2002). Source description of the 1999 Hector Mine, California earthquake, part I: Wavelet domain inversion theory and resolution analysis, Bull. Seism. Soc. Am. 92, no. 4, 1192–1207. Johnson, J. M., K. Satake, S. R. Holdahl, and J. Sauber (1996). The 1964 Prince Williams Sound Earthquake: joint inversion of tsunami and geodetic data, J. Geophys. Res. 101, 523–532. Kru¨ger, F., and M. Ohrnberger (2005). Tracking the rupture of the MW 9.3 Sumatra earthquake over 1,150 km at teleseismic distance, Nature 435, 937–939. Lay, T., H. Kanamori, C. J. Ammon, M. Nettles, S. N. Ward, R. C. Aster, S. L. Beck, S. L. Bilek, M. R. Brudzinski, R. Butler, H. R. De Shon, G. Ekstro¨m, K. Satake, and S. Sipkin (2005). The great Sumatra– Andaman earthquake of 26 December 2004, Science 308, 1127–1133. Liu, P., and R. J. Archuleta (2004). A new nonlinear finite fault inversion with three-dimensional Green’s functions: application to the 1989 Loma Prieta, California, earthquake, J. Geophys. Res. 109, B02318, doi 10.1029/2003JB002625. Merrifield, M. A., Y. L. Firing, T. Aarup, W. Agricole, G. Brundritt, D. Chang-Seng, R. Farre, B. Kilonsky, W. Knight, L. Kong, C. Magori, P. Manurung, C. McCreery, W. Mitchell, S. Pillay, F. Schindele, F. Shillington, L. Testut, E. M. S. Wijeratne, P. Caldwell, J. Jardin, S. Nakahara, F.-Y. Porter, and N. Turetsky (2005). Tide gauge observations of the Indian Ocean tsunami, December 26, 2004, Geophys. Res. Lett. 32, L09603, doi 10.1029/2005GL022610. Mosegaard, K., and M. Sambridge (2002). Monte Carlo analysis of inverse problems, Inverse Problems 18, R29–R54. Mosegaard, K., and A. Tarantola (1995). Monte Carlo sampling of solutions to inverse problems, J. Geophys. Res. 100, no. B7, 12,431–12,447. Nagarajan, B., I. Suresh, D. Sundar, R. Sharma, A. K. Lal, S. Neetu, S. S. C. Shenoi, S. R. Shetye, and D. Shankar (2006). The great tsunami of 26 December 2004: a description based on tide-gauge data from the Indian subcontinent and surrounding areas, Earth Planet Space 58, 211–215. Ni, S., H. Kanamori, and D. Helmberger (2005). Energy radiation from the Sumatra earthquake, Nature 434, 582. Okada, Y. (1992). Internal deformation due to shear and tensile faults in a half-space, Bull. Seism. Soc. Am. 82, 1018–1040. Ortiz, M., and R. Bilham (2003). Source area and rupture parameters of the 31 December 1881MW 7.9 Car Nicobar earthquake estimated from tsunamis recorded in the ay of Bengal, J. Geophys. Res. 108, no. 4, doi 10.1029/2002JB001941. Park, J., T. R. A. Song, J. Tromp, E. Okal, S. Stein, G. Roult, E. Clevede, G. Laske, H. Kanamori, P. Davis, J. Berger, C. Braitenberg, M. Van Camp, X. Lei, H. Sung, H. Xu, and S. Rosat (2005). Earth’s free oscillations excited by the 26 December 2004 Sumatra–Andaman earthquake, Science 308, 1139–1144. Piatanesi, A., S. Tinti, and I. Gavagni (1996). The slip distribution of the 1992 Nicaragua earthquake from tsunami run-up data, Geophys. Res. Lett. 23, no. 1, 37–40. Rothman, D. (1986). Automatic estimation of large residual statics corrections, Geophysics 51, 332–346. Sambridge, M., and K. Mosegaard (2002). Monte Carlo methods in geophysical inverse problems, Rev. Geophys. 40, no. 3, doi 10.1029/ 2000RG000089. Satake, K. (1987). Inversion of tsunami waveforms for the estimation of a fault heterogeneity: method and numerical experiments, J. Phys. Earth 35, 241–254. Sen, M., and P. L. Stoffa (1991). Nonlinear one-dimensional seismic waveform inversion using simulated annealing, Geophysics 56, 1624– 1638. Shibutani, T., M. Sambridge, and B. Kennett (1996). Genetic algorithm inversion for receiver functions with applications to crust and uppermost mantle structure beneath Eastern Australia, Geophy. Res. Lett. 23, 1829–1832. Smith, W. H. F., and D. T. Sandwell (1997). Global sea floor topography from satellite altimetry and ship depth soundings, Science 277, 1956– 1962. Stein, S., and E. A. Okal (2005). Speed and size of the Sumatra earthquake, Nature 434, 581–582. Subarya, C., M. Chlieh, L. Prawirodirdjo, J-P. Avouac, Y. Boch, K. Sieh, A. J. Meltzmer, D. H. Natawidjaja, and R. McCaffrey (2006). Plate deformation associated with the great Sumatra–Andaman earthquake, Nature 440, 46–51. Tanioka, Y., Yudhicara, T. Kususose, S. Kathiroli, Y. Nishimura, S. I. Iwasaki, and K. Satake (2006). Rupture process of the 2004 great Sumatra–Andaman earthquake estimated from tsunami waveforms, Earth Planet Space 58, 203–209. Tarantola, A. (1987). Inverse Problem Theory, Elsevier Science, New York. Tsai, V. C., M. Nettles, G. Ekstro¨m, and A. Dziewonski (2005). Multiple CMT source analysis of the 2004 Sumatra earthquake, Geophys. Res. Lett. 32, L17304, doi 10.1029/2005GL023813. Tsuji, Y., Y. Namegaya, H. Matsumoto, S.-I. Iwasaki, W. Kambua, M. Sriwichai, and V. Meesuk (2006). The 2004 Indian tsunami in Thailand: tsunami height and tide-gauge records, Earth Planet Space 58, 223–232. Vigny, C., W. J. F. Simons, S. Abu, R. Bamphenyu, C. Satirapod, N. Choosakul, C. Subaraya, A. Soquet, K. Omar, H. Z. Abidin, and B. A. C. Ambrosius (2005). Insight into the 2004 Sumatra–Andaman earthquake from GPS measurements in Southeast Asia, Nature 436, 201– 206. Wessel, P., and W. H. F. Smith (1998). New, improved version of the Generic Mapping Tools released, EOS Trans. AGU 79, 579.en
dc.description.obiettivoSpecifico3.1. Fisica dei terremotien
dc.description.journalTypeJCR Journalen
dc.description.fulltextpartially_openen
dc.contributor.authorPiatanesi, A.en
dc.contributor.authorLorito, S.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.orcid0000-0003-2863-3662-
crisitem.author.orcid0000-0002-1458-2131-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Bssa_2007_sumatra.pdf384.19 kBAdobe PDF
bssa_sumatra_2006_final.doc.pdfunformatted final version883.76 kBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations

55
checked on Feb 10, 2021

Page view(s) 50

188
checked on Apr 17, 2024

Download(s) 50

314
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric