Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/3103
DC FieldValueLanguage
dc.contributor.authorallCarbone, D.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.authorallGreco, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.date.accessioned2007-12-12T13:18:43Zen
dc.date.available2007-12-12T13:18:43Zen
dc.date.issued2007en
dc.identifier.urihttp://hdl.handle.net/2122/3103en
dc.description.abstractMicrogravity observations at Mt. Etna have been routinely performed as both discrete (since 1986) and continuous (since 1998) measurements. In addition to describing the methodology for acquiring and reducing gravity data from Mt. Etna, this paper provides a collection of case studies aimed at demonstrating the potential of microgravity to investigate the plumbing system of an active volcano and detect forerunners to paroxysmal volcanic events. For discrete gravity measurements, results from 1994– 1996 and 2001 are reported. During the first period, the observed gravity changes are interpreted within the framework of the Strombolian activity which occurred from the summit craters. Gravity changes observed during the first nine months of 2001 are directly related to subsurface mass redistributions which preceded, accompanied and followed the July-August 2001 flank eruption of Mt. Etna. Two continuous gravity records are discussed: a 16-month (October 1998 to February 2000) sequence and a 48-hour (26–28 October, 2002) sequence, both from a station within a few kilometers of the volcano’s summit. The 16-month record may be the longest continuous gravity sequence ever acquired at a station very close to the summit zone of an active volcano. By cross analyzing it with contemporaneous discrete observations along a summit profile of stations, both the geometry of a buried source and its time evolution can be investigated. The shorter continuous sequence encompasses the onset of an eruption from a location only 1.5 km from the gravity station. This gravity record is useful for establishing constraints on the characteristics of the intrusive mechanism leading to the eruption. In particular, the observed gravity anomaly indicates that the magma intrusion occurred ‘‘passively’’ within a fracture system opened by external forces.en
dc.language.isoEnglishen
dc.publisher.nameSpringeren
dc.relation.ispartofPure and applied geophysicsen
dc.relation.ispartofseries/ 164 (2007)en
dc.subjectMt. Etnaen
dc.subjectmicrogravityen
dc.titleReview of Microgravity Observations at Mt. Etna: A Powerful Tool to Monitor and Study Active Volcanoes.en
dc.typearticleen
dc.description.statusPublisheden
dc.description.pagenumber769-790en
dc.subject.INGV04. Solid Earth::04.03. Geodesy::04.03.05. Gravity variationsen
dc.identifier.doi10.1007/s00024-007-0194-7en
dc.relation.referencesAloisi, M., Bonaccorso, A., Gambino, S., Mattia, M. and Puglisi, G. (2003), Etna 2002 eruption imaged from continuous tilt and GPS data, Geophys. Res. Lett. 30, 2214-2218. Aloisi, M., Bonaccorso, A. and Gambino, S. (2006), Imaging composite dike propagation (Etna, 2002 case), J. Geophys. Res. 111 (B6), B06404 10.1029/2005JB003908. Andò, B. and Carbone, D. (2001), A Methodology for Reducing the Signal from a Continuously Recording Gravity Meter for the Effect of Meteorological Parameters, IEEE Transactions on Instrumentation and Measurement, 50 (5), 1248-1254. Andò, B. and Carbone, D. (2004), A test on a Neuro-Fuzzy algorithm used to reduce continuous gravity records for the effect of meteorological parameters, Phys. of the Earth and Planet. Int. 142, 37-47. Andronico, D., Branca, S., Del Carlo, P. (2001), The 18.7 ka phreatomagmatic flank eruption on Etna (Italy): relationship between eruptive activity and sedimentary basement setting, Terra Nova 13, 235-240. Andronico, D., Branca, S., Calvari, S., Burton, M.B., Caltabiano, T., Corsaro, R.A., Del Carlo, P., Garfì, G., Lodato, L., Miraglia, L., Murè, F., Neri, M., Pecora, E., Pompilio, M., Salerno, G. and Spampinato, L. (2005), A multi-disciplinary study of the 2002–03 Etna eruption: insights into a complex plumbing system, Bull. Volcanol. 67, 314–330. Armienti, P., D’Orazio, M., Innocenti, F., Tonarini, S. and Villari, L. (1996), October 1995-February 1996 Mt Etna explosive activity: trace element and isotopic constraints on the feeding system, Acta Vulcanol. 8, 1-6. Bonaccorso, A., Aloisi, M. and Mattia, M. (2002), Dike emplacement forerunning the Etna July 2001 eruption modelled through continuous tilt and GPS data, Geoph. Res. Lett. 29, 13. Bonaccorso, A., D’Amico, S., Mattia, M. and Patanè, D. (2004), Intrusive mechanism at Mt Etna forerunning the July-August 2001 eruption, Pure Appl. Geophys. 161, 7, 1469-1487. Bonforte, A., Carbone, D., Greco, F. and Palano, M. (2007), Intrusive mechanism of the 2002 NE-rift eruption at Mt Etna (Italy) modelled using GPS and gravity data, Geophys. J. Int. 169, 339–347. Bonforte, A., Guglielmino, F., Palano, M., Puglisi, G., Ferretti, A., Colesanti, C., Dynamics of Mt. Etna before, during and after the 2001 eruption inferred from GPS and InSAR data, J. Geoph. Res. Submitted. Bonvalot, S., Diament, M. and Germinal, G. (1998). Continuous gravity recording with Scintrex CG-3M meters: a promising tool for monitoring active zones, Geophys. J. Int. 135, 470-494. Borgia, A., Ferrari, L. and Pasquarè, G. (1992), Importance of gravitational spreading in the tectonic and volcanic evolution of Mount Etna, Nature, 357, 231-235. Branca, S., Carbone, D. and Greco, F. (2003), Intrusive mechanism of the 2002 NE-Rift eruption at Mt. Etna (Italy) inferred through continuous microgravity data and volcanological evidences, Geoph. Res. Lett. 30, 20, 2077, 10.1029/2003GL018250. Budetta, G., Grimaldi, M. and Luongo, G. (1989), Variazioni di gravità nell’area etnea (1986-1989), Boll. GNV, 5, 137-146. Budetta, G. and Carbone, D. (1997), Potential application of the Scintrex CG-3M gravimeter for monitoring volcanic activity: results of field trials on Mt. Etna, Sicily, J. Volcanol. Geotherm. Res. 66, 199-214. Budetta, G. and Carbone, D. (1998), Temporal variations in gravity at Mt Etna (Italy) associated with the 1989 and 1991 eruptions, Bull. Volcanol. 59, 311-326. Budetta, G., Carbone, D. and Greco, F. (1999), Subsurface mass redistribution at Mount Etna (Italy) during the 1995-96 explosive activity detected by microgravity studies, Geophys. J. Int. 138, 77-88. Budetta, G., Carbone, D., Greco, F. and Rymer, H. (2004), Microgravity Studies at Mount Etna (Italy). in “Mt. Etna: Volcano Laboratory”, Geophys. Monogr. Ser. 143, edited by Calvari S., Bonaccorso A., Coltelli M., Del Negro C., Falsaperla S. (Eds), AGU (Geophysical monograph series; 143) 221-240. Carbone, D., (2002), Gravity monitoring of Mount Etna (Italy) through discrete and continuous measurements, PhD Thesis, The Open University, Milton Keynes, UK. Carbone, D., Budetta, G. and Greco, F. (2003a), Possible mechanisms of magma redistribution under Mt Etna during the 1994–1999 period detected through microgravity measurements, Geoph. J. Int. 152, 1–14. Carbone, D., Budetta, G., Greco, F. (2003b), Bulk processes some months before the start of the 2001 Mt Etna eruption, evidenced throught microgravity studies, J. Geoph. Res. Vol. 108, No. B12, 2556. Carbone, D., Budetta, G., Greco, F. and Rymer, H. (2003c), Combined discrete and continuous gravity observations at Mt. Etna, J. Volcanol. Geoth. Res. 2581, 1-13. Corsaro, R., Miraglia, L. and Pompilio, M. (2007), Petrologic evidence of a complex plumbing system feeding the July–August 2001 eruption of Mt. Etna, Sicily, Italy, Bull. Volcanol. 69, 401–421. Dehant, V. (1987). Tidal parameters for an inelastic Earth. Phys. Earth Planet. Inter. 49, 97-116. Dzurisin, D., Anderson, L. A., Eaton, G. P., Koyanagi, R. Y., Lipman, P. W., Lockwood, J. P., kamura, R. T., Puniwai, G. S., Sako, M. K. and Yamashita, K. M. (1980), Geophysical observations of Kilauea volcano, Hawaii, 2. Constraints on the magma supply during November 1975-September 1977, J. Volcanol. Geotherm. Res. 7, 241-269. Ferrari, L. (1991), Evoluzione vulcanologica e strutturale del Monte Etna e i suoi rapporti con il vulcanismo ibleo, PhD thesis, Dipartimento di Scienze della Terra, Università di Milano, Milano. Froger, J.L., Merle, O. and Briole, P. (2001), Active spreading and regional extension at Mount Etna imaged by SAR interferometry, Earth Planet. Sci. Lett., 187, 245-258. Garduño, V.H., Neri, M., Pasquarè, G., Borgia, A. and Ribaldi, A. (1997), Geology of the NE-Rift of Mount Etna (Sicily, Italy), Acta Vulcanol. 9, 1/2, 91-100. INGV-Sezione di Catania Research Staff (2001), Multidisciplinary approach Yelds insight into Mt. Etna eruption, Eos, Transactions, American Geophysical Union, 82, 50, 653-656. LaCoste & Romber, (1997), General Catalog, Austin, Texas (U.S.A). Laigle, M., Hirn, A., Sapin, M. and Lepine, J.C. (2000), Mount Etna dense array local earthquakes P and S tomography and implications for volcanic plumbing, J. Geophys. Res. 105, 21633-21646. Lautze, N.C., Harris, A.J.L., Bailey, J.E., Ripepe, M., Calvari, S., Dehn, J., Rowland S. and Evans-Jones, K. (2004), Pulsed lava effusion at Mount Etna during 2001, J. Volcanol. Geotherm. Res. 137, 231-246. Leonardi, S., Caltabiano, T., Gresta, S., Mulargia, F., Privitera, E., Romano, R. and Rossi. P.L. (1999), Cross-correlation between volcanic tremor and SO2 flux data from Mt. Etna volcano, 1987-1995, Acta Vulcanologica, 11 (2), 225-258 Lo Giudice, E. and Rasà, R. (1992), Very shallow earthquakes and brittle deformation in active volcanic areas: the Etnean region as an example, Tectonophysics, 202, 257-268. Merriam, J.B. (1992), Atmospheric pressure and gravity. Geophys. J. Int. 109, 488-500. Niebauer, T.M. (1988), Correcting gravity measurements for the effect of local air pressure, J. Geoph. Res. 93, 7989-7991. Patanè, D., Chiarabba, C., Cocina, O., De Gori, P., Moretti, M. and Boschi, E. (2002), Tomographic images and 3D earthquake locations of the seismic swarm preceding the 2001 Mt. Etna eruption: Evidence for a dyke intrusion, Geophys. Res. Lett. 29 NO. 10, 10.1029/2001GL014391. Patanè, D., Mattia M., and Aloisi, M. (2005), Shallow intrusive processes during 2002–2004 and current volcanic activity on Mt. Etna, Geophys. Res. Lett. 32, L06302, doi:10.1029/2004GL021773 Pompilio, M., Corsaro, R.A., Freda, C., Miraglia, L., Scarlato, P. and Taddeucci, J. (2001), Petrological Evidences of a Complex Plumbing System Feeding the July-August 2001 Eruption of Mt. Etna, EOS Trans. Am. Geophys. Union, Fall Meeting Suppl. Abstract 82 (47) F1412. Puglisi, G. and Bonforte, A. (1999), Monitoring active deformation of volcanoes by interferometry as an early warning system, in: MADVIEWS, EC Project n. ENV4-CT96-0294, contribution of CNR – IIV, Final Report. Okada, Y. (1985), Surface deformation due to shear and tensile fault in half-space, Bull. Seismol. Soc. Am. 75, 1135-1154. Rymer, H. (1989), A contribution to precision microgravity data analysis using LaCoste and Romberg gravity meters, Geophys. J. 97, 311-322. Seidl, D., Schick, R. and Riuscetti, M. (1981), Volcanic tremors at Etna: a model for hydraulic origin, Bull. Volcanol. 44, 43-56. Schick, R. (1988), Volcanic tremor-source mechanism and correlation with eruptive activity, Natural Hazard, 141, 125–144. Scintrex Limited, (1992), Autograv Operator Manual Version 4.4, Concord, Ontario (Canada). Spampinato, S., Gambino, S., Patane, D., Privitera, E., D’Amico, G., Di Prima, S., Pellegrino, A., Scuderi, L. and Torrisi, O. (1998), Seismic activity, in: Data related to eruptive activity, unrest phenomena and other observations on the Italian active volcanoes. Geophysical Monitoring of the Italian Active volcanoes 1993-1995 - Etna (P. Gasperini ed), Acta Volcanol. 10, 149-153. Spratt, R.S. (1982), Modelling the effect of atmospheric pressure variations on gravity, Geoph. J. R. Astron. Soc., 71, 173-186. Tamura, Y. (1987). A harmonic development of the tide-generating potential., Bull. Inf. Marees Terr. 99, 6813-6855. Torge, W. (1989), Gravimetry, ed. Walter de Gruyter. Berlin-New York. Wenzel, H.G. (1996), The nanogal software: Earth tide data processing package ETERNA 3.30. Inf. Marées Terrestres. 124, 9425-9439.en
dc.description.obiettivoSpecifico2.6. TTC - Laboratorio di gravimetria, magnetismo ed elettromagnetismo in aree attiveen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorCarbone, D.en
dc.contributor.authorGreco, F.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.orcid0000-0003-2566-6290-
crisitem.author.orcid0000-0002-0265-5073-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Carbone and Greco 2007 (Pageoph).pdfMain article762.73 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

25
checked on Feb 10, 2021

Page view(s)

128
checked on Apr 24, 2024

Download(s)

24
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric