Earth-prints repository, logo   DSpace

About DSpace Software
|earth-prints home page | roma library | bologna library | catania library | milano library | napoli library | palermo library
Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/3019

Authors: Stabile, T. A.*
De Matteis, R.*
Zollo, A.*
Title: Development of a multi-phase dynamic ray-tracing code
Issue Date: 2007
Series/Report no.: INGV- DPC/V4 PROJECT V4
Keywords: seismic phases
Axitra code
Abstract: We here propose a method for rapid, high-frequency seismogram generation that makes use of an algorithm to automatically generate an exhau- stive set of seismic phases that produce an appreciable amplitude on the sei- smogram. The method uses a hierarchical order of rays and seismic phases generation, taking into account some existence constraints for a ray-path and some physical constraints. To compute synthetic seismograms, the COMRAD code (from the Italian: “COdice Multifase per il RAy-tracing Dinamico”) uses as its core a dynamic ray-tracing code. To validate the code, we have computed in a layered medium synthetic seismograms using both COMRAD and a code which computes the complete wavefield by the discrete wavenumber method. The seismograms are compared according to a time-frequency misfit criteria based on the continuous wavelet transform of the signals. The comparison shows that the ray-theory seismogram is enough complete and moreover, the time for the computing of the synthetics using the COMRAD code (truncating the ray series at the 10th generation) is 3-4-fold less than that needed for the Axitra code (to a frequency of 25 Hz).
Appears in Collections:04.06.10. Instruments and techniques
Reports

Files in This Item:

File SizeFormatVisibility
StaDem-2007.pdf566.5 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Share this record
Del.icio.us

Citeulike

Connotea

Facebook

Stumble it!

reddit


 

Valid XHTML 1.0! ICT Support, development & maintenance are provided by CINECA. Powered on DSpace Software. CINECA