Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/3010
DC FieldValueLanguage
dc.contributor.authorallConvertito, V.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallIervolino, I.; Dipartimento di Ingegneria Strutturale, Universita` di Napoli Federico II, Napoli, Italyen
dc.contributor.authorallZollo, A.; Dipartimento di Fisica, Universita` di Napoli Federico II, Napoli, Italyen
dc.contributor.authorallManfredi, G.; Dipartimento di Fisica, Universita` di Napoli Federico II, Napoli, Italyen
dc.date.accessioned2007-12-07T07:18:35Zen
dc.date.available2007-12-07T07:18:35Zen
dc.date.issued2007en
dc.identifier.urihttp://hdl.handle.net/2122/3010en
dc.description.abstractThe development and implementation of an earthquake early warning system (EEWS), both in regional or on-site configurations can help to mitigate the losses due to the occurrence of moderate-to-large earthquakes in densely populated and/or industrialized areas. The capability of an EEWS to provide real-time estimates of source parameters (location and magnitude) can be used to take some countermeasures during the earthquake occurrence and before the arriving of the most destructive waves at the site of interest. However, some critical issues are peculiar of EEWS and need further investigation: (1) the uncertainties on earthquake magnitude and location estimates based on the measurements of some observed quantities in the very early portion of the recorded signals; (2) the selection of the most appropriate parameter to be used to predict the ground motion amplitude both in near-and far-source ranges; (3) the use of the estimates provided by the EEWS for structural engineering and risk mitigation applications. In the present study, the issues above are discussed using the Campania–Lucania region (Southern Apennines) in Italy, as test-site area. In this region a prototype system for earthquake early warning, and more generally for seismic alert management, is under development. The system is based on a dense, wide dynamic accelerometric network deployed in the area where the moderate-to-large earthquake causative fault systems are located. The uncertainty analysis is performed through a real-time probabilistic seismic hazard analysis by using two different approaches. The first is the Bayesian approach that implicitly integrate both the time evolving estimate of earthquake parameters, the probability density functions and the variability of ground motion propagation providing the most complete information. The second is a classical point estimate approach which does not account for the probability density function of the magnitude and only uses the average of the estimates performed at each seismic station. Both the approaches are applied to two main towns located in the area of interest, Napoli and Avellino, for which a missed and false alarm analysis is presented by means of a scenario earthquake: an M 7.0 seismic event located at the centre of the seismic network. Concerning the ground motion prediction, attention is focused on the response spectra as the most appropriate function to characterize the ground motion for earthquake engineering applications of EEWS.en
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofSoil Dynamics and Earthquake Engineeringen
dc.subjectEarthquake early-warningen
dc.subjectReal-time seismologyen
dc.subjectBayesian analysisen
dc.subjectMissed and false alarmen
dc.titlePrediction of response spectra via real-time earthquake measurementsen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberOn line Firsten
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamicsen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.11. Seismic risken
dc.identifier.doi10.1016/j.soildyn.2007.07.006en
dc.relation.references[1] Heaton TH. A model for a seismic computerized alert network. Science 1985;228:987–90. [2] Kanamori H. Real-time seismology and earthquake damage mitiga- tion. Annu Rev Earth Planet Sci 2004;33:5.1–5.20. [3] Allen RM, Kanamori H. The potential for earthquake early warning in Southern California. Science 2003;300:786–9. [4] Wu YM, Zhao L. Magnitude estimation using the first three seconds p-wave amplitude in earthquake early warning. Geophys Res Lett 2006;33:L16312. [5] Zollo A, Lancieri M, Nielsen S. Earthquake magnitude estimation from peak amplitudes of very early seismic signals on strong motion records. Geophys Res Lett 2006;33:L23312. [6] Horiuchi S, Negishi H, Abe K, Kanimura A, Fujinawa Y. An automatic processing system for broadcasting earthquake alarms. Bull Seism Soc Am 2005;95:708–18. [7] Rydelek P, Pujol J. Real-time seismic warning with a 2-station subarray. Bull Seism Soc Am 2004;94:1546–50. [8] Satriano C, Lomax A, Zollo A. Real-time evolutionary location for seismic early warning. Bull Seism Soc Am 2006 Submitted for publication. [9] Wald DJ, Quitoriano V, Heaton TH, Kanamori H, Scrivner CW, Worden CB. TriNet ShakeMaps: rapid generation of instrumental ground motion and intensity maps for earthquakes in southern California. Earthquake Spectra 1999;15:537–55. [10] Allen RM. The ElarmS earthquake warning methodology and application across California. In: Pecce M, Manfredi G, Zollo A, editors. In the many facets of seismic risk. Proceedings of the workshop on multidisciplinary approach to seismic risk problem, Sant’Angelo dei Lombardi, September 22, 2003. Universita` degli Studi di Napoli ‘‘Federico II’’–CRdC-AMRA, 2004. [11] Dreger D, Kaverina A. Seismic remote sensing for the earthquake source process and near-source strong shaking: a case study of the October 16, 1999 Hector mine earthquake. Geophys Res Lett 2000;27:1941–4. [12] Iervolino I, Convertito V, Giorgio M, Manfredi G, Zollo A. Real- time risk analysis in hybrid early warning systems. J Earthquake Eng 2006;10(6):867–85. [13] Iervolino I, Giorgio M, Manfredi G. Expected loss-based alarm threshold set for earthquake early warning system. Earthquake Eng Struct Dyn 2007;36(9):1151–68. [14] Cornell CA. Engineering seismic risk analysis. Bull Seism Soc Am 1968;58:1583–606. [15] Weber E, Iannaccone G, Zollo A, Bobbio A, Cantore L, Corciulo M, et al. Development and testing of an advanced monitoring infrastructure (ISNet) for seismic early-warning applications in the Campania region of southern Italy. In: Gasparini et al., editors. Earthquake early warning systems. Berlin: Springer; 2007 [16] Reiter L. Earthquake hazard analysis—issues and insights. New York: Columbia University Press; 1990. 254pp. [17] Akkar S, Bommer JJ. Prediction of elastic displacement response spectra in Europe and the Middle East. Earthquake Eng Struct Dyn 2007;36(10):1275–301. [18] Ambraseys NN, Douglas J, Sarma SK, Smit P. Equations for the estimation of strong ground motions from shallow crustal earth- quakes using data from Europe and the Middle East: horizontal peak ground acceleration and spectral acceleration. Bull Earthquake Eng 2005;3(1):1–53. [19] Sabetta F, Pugliese A. Estimation of response spectra and simulation of nonstationarity earthquake ground motion. Bull Seism Soc Am 1996;86:337–52. [20] Pate` -Cornell ME. Warning systems in risk management. Risk Manage 1986;6:223–34. [21] CEN, European Committee for Standardisation TC250/SC8/ [2003] Eurocode 8: design provisions for earthquake resistance of structures, Part 1.1: general rules, seismic actions and rules for buildings, PrEN1998-1. [22] Calvi GM, Stucchi M, Mappe interattive della pericolosita` sismica. Distributed through the Internet 2006: URL: /http://esse1.mi.ingv.itS. [23] Wessel P, Smith WHF. Free software helps map and display data. EOS Trans Am Geophys Union 1991;72(441):445–6.en
dc.description.obiettivoSpecifico4.1. Metodologie sismologiche per l'ingegneria sismicaen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorConvertito, V.en
dc.contributor.authorIervolino, I.en
dc.contributor.authorZollo, A.en
dc.contributor.authorManfredi, G.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentDipartimento di Ingegneria Strutturale, Universita` di Napoli Federico II, Napoli, Italyen
dc.contributor.departmentDipartimento di Fisica, Universita` di Napoli Federico II, Napoli, Italyen
dc.contributor.departmentDipartimento di Fisica, Universita` di Napoli Federico II, Napoli, Italyen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptUniversità degli Studi di Napoli Federico II-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.orcid0000-0002-7115-7502-
crisitem.author.orcid0000-0002-4076-2718-
crisitem.author.orcid0000-0002-8191-9566-
crisitem.author.orcid0000-0002-4860-4511-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
ConIer-2007.pdf2.54 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

21
checked on Feb 10, 2021

Page view(s)

135
checked on Mar 27, 2024

Download(s)

25
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric