Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/2951
DC FieldValueLanguage
dc.contributor.authorallHutchings, L.; Lawrence Livermore National Laboratory, Hazards Mitigation Center, PO Box 808, L-201, Livermore, CA 94551-0808, USA.en
dc.contributor.authorallIoannidou, E.; Department of Geophysics-Geothermics, University of Athens, Athens 15783, Greeceen
dc.contributor.authorallFoxall, W.; Lawrence Livermore National Laboratory, Hazards Mitigation Center, PO Box 808, L-201, Livermore, CA 94551-0808, USA.en
dc.contributor.authorallVoulgaris, N.; Department of Geophysics-Geothermics, University of Athens, Athens 15783, Greeceen
dc.contributor.authorallSavy, J.; Lawrence Livermore National Laboratory, Hazards Mitigation Center, PO Box 808, L-201, Livermore, CA 94551-0808, USA.en
dc.contributor.authorallKalogeras, I.; Institute of Geodynamics, National Observatory of Athens, Athens, Greeceen
dc.contributor.authorallScognamiglio, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.contributor.authorallStavrakakis, G.; Institute of Geodynamics, National Observatory of Athens, Athens, Greeceen
dc.date.accessioned2007-12-04T16:37:07Zen
dc.date.available2007-12-04T16:37:07Zen
dc.date.issued2007-02en
dc.identifier.urihttp://hdl.handle.net/2122/2951en
dc.description.abstractWe present a physically based methodology to predict the range of ground-motion hazard for earthquakes along specific faults or within specific source volumes, and we demonstrate how to incorporate this methodology into probabilistic seismic hazard analyses (PSHA). By ‘physically based,’ we refer to ground-motion syntheses derived from physics and an understanding of the earthquake process. This approach replaces the aleatory uncertainty that current PSHA studies estimate by regression of empirical parameters with epistemic uncertainty that is expressed by the variability in the physical parameters of the earthquake rupture. Epistemic uncertainty can be reduced by further research.We modelled wave propagation with empirical Green’s functions. We applied our methodology to the 1999 September 7 Mw = 6.0 Athens earthquake for frequencies between 1 and 20 Hz.We developed constraints on rupture parameters based on prior knowledge of the earthquake rupture process and on sources within the region, and computed a sufficient number of scenario earthquakes to span the full variability of ground motion possible for a magnitude Mw = 6.0 earthquake with our approach. We found that: (1) our distribution of synthesized ground motions spans what actually occurred and that the distribution is realistically narrow; (2) one of our source models generates records that match observed time histories well; (3) certain combinations of rupture parameters produced ‘extreme,’ but not unrealistic ground motions at some stations; (4) the best-fitting rupture models occur in the vicinity of 38.05!N, 23.60!Wwith a centre of rupture near a 12-km depth and have nearly unilateral rupture toward the areas of high damage, which is consistent with independent investigations.We synthesized ground motion in the areas of high damage where strong motion records were not recorded from this earthquake. We also developed a demonstration PSHA for a single magnitude earthquake and for a single source region near Athens. We assumed an average return period of 1000 yr for this magnitude earthquake and synthesized 500 earthquakes distributed throughout the source zone, thereby having simulated a sample catalogue of ground motion for a period of 500 000 yr. We then used the synthesized ground motions rather than traditional attenuation relations for the PSHA.en
dc.description.sponsorshipThis project was partially funded by the National Observatory of Athens, Greece, which also contributed significant data and data processing. The University of Athens, Greece contributed significant computational facilities and data. This project was partially supported by the University of California, Lawrence Livermore National Laboratory under the auspices of the U.S. Department of Energy under contract W-7405-Eng-48.en
dc.language.isoEnglishen
dc.publisher.nameBlackwell Synergyen
dc.relation.ispartofGeophysical Journal Internationalen
dc.relation.ispartofseries2/168(2007)en
dc.subjectcomputational PSHAen
dc.subjectempirical Green's functionsen
dc.subjectquasi-dynamicen
dc.subjectsource modelsen
dc.subjectstrong ground-motion predictionen
dc.subject1999 Athens earthquakeen
dc.titleA physically based strong ground-motion prediction methodology; application to PSHA and the 1999 Mw = 6.0 Athens earthquakeen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber659-680en
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.04. Ground motionen
dc.identifier.doi10.1111/j.1365-246X.2006.03178.xen
dc.relation.referencesAbrahamson, N.A. & Shedlock, K.M., 1997. Overview, Seismol. Res. Lett., 68(1). Abrahamson, N.A., Somerville, P.G. & Cornell, C.A., 1990. Uncertainty in numerical strong motion predictions, in Proc. Fourth U.S. National Conf. Earthquake Engineering, Vol. 1, Earthquake Engineering Research Institute, 20–24 May, Palmsprings, California. Aki, K. & Richards, P.G., 1980. Quantitative Seismology, Theory and Methods, Vol. I–II, W.H. Freeman and Company, San Francisco, CA. Anderson, J.G., 2003. Quantitative measure of the goodness of fit of synthetic accelerograms, presented at 13th World Conference on Earthquake Engineering, Vancouver, B.C., Canada, August 1–6, 2004, paper No. 243. Anderson, J.G.&Brune, J., 1999. Probabilistic seismic hazard analysis without the ergodic assumption, Seismol. Res. Lett., 71(1), 19–28. Assimaki, D., Gazetas, G. & Kausel, E., 2003. Effects of local soil conditions on the topographic aggravation of seismic motion: investigation and recorded field evidence from the 1999 Athens earthquake, Bull. seism. Soc. Am., 95, 1059–1089. Basili, M. & Brady, G., 1978. Low frequency filtering and the selection of limits for accelerogram corrections, Proc. VI European Conf. Earthquake Engineering, September 18–22, Dubrovnik, Yugoslavia, pp. 251– 258. Boatwright, J.L., 1981. Quasi-dynamic models of simple earthquake: an application to an aftershock of the 1975 Oroville, California earthquake. Bull. seism. Soc. Am., 71, 69–94. Bommer, J.J. et al., 2004. The challenge of defining upper bounds on earthquake ground motion, Seismol. Res. Lett., 75(1), 82–95. Boore, D., 1983. Stochastic simulation of high-frequency ground motions based on seismological models of the radiated spectra, Bull. seism. Soc. Am., 73(6), 1865–1894. Burridge, R. &Willis, J.R., 1969. The self-similar problem of the expanding crack in an anisotropic solid, Proc. Cambridge Phil. Soc., 66, 443–468. Campbell,K.W.&Bozorgnia,Y., 2003. Updated near-source ground-motion (attenuation) relations for the horizontal and vertical components of peak ground acceleration and acceleration response spectra, Bull. seism. Soc. Am., 93, 314–331. Cohee, B.P., Somerville, P.G.&Abrahamson, N.A., 1991. Simulated ground motions for hypothesized Mw = 8.0 subduction earthquakes inWashington and Oregon, Bull. seism. Soc. Am., 81, 28–56. Convertito, V., Emolo, A. & Zollo, A., 2006. Seismic-hazard assessment for a characteristic earthquake scenario: an integrated probabilisticdeterministic method, Bull. seism. Soc. Am., 96, 377–391. Cornell, C.A., 1968. Engineering seismic risk analysis, Bull. seism. Soc. Am., 58, 1583–1606. Dan, K., Watanabe, T., Tanaka, T. & Sato, R., 1990. Stability of earthquake ground motion synthesized by using different small-event records as empirical Green’s functions, Bull. seism. Soc. Am., 80, 1433–1455. Douglas, J., 2003. Earthquake ground motion estimation using strongmotion records: a review of equations for the estimation of peak ground acceleration and response spectral ordinates, Earth-science Reviews, 61, 43–104. EERI, 1999. The Athens, Greece earthquake of September 7, 1999, Special Earthquake Report—Learning from Earthquakes, EERI, November 1999. Fenves, G.L. & Ellery, M., 1998. Behavior and Failure Analysis of a Multiple-Frame Highway Bridge in the 1994 Northridge Earthquake, Pacific Earthquake Engineering Research Center, Report No. PEER 98/08. Field, E.H. & the Phase IIWorking Group, 2000. Accounting for site effects in probabilistic seismic hazard analyses of southern California: overview of the SCEC Phase II Report, Bull. seism. Soc. Am., 90, S1–S31. Field, E.H., Jordan, T.H. & Cornell, C.A., 2003. OpenSHA: a developing community-modeling environment for seismic hazard analysis, Seism. Res. Lett., 74(4), 406–419. Foxall, W., Hutchings, L. & Kasameyer, P., 1994. Lithological and rheological constraints on fault rupture scenarios for ground motion hazard prediction, IUTM Symp. Mechanics Problems in Geodynamics, September 5–9, 1994, Beijing, China; also published by Lawrence Livermore National Laboratory, Livermore, CA, UCRL-JC-116437. Gok, R. & Hutchings, L., 2006. Source parameters and Scaling Relations for the North Anatolian fault zone, Turkey Earthquake, submitted, Bull. seism. Soc. Am., LLNL, UCRL-JC-206080. Guatteri, M.P., Mai, M., Beroza, G.C.&Boatwright, J., 2003. Strong groundmotion prediction from stochastic-dynamic source models, Bull. seism. Soc. Am., 93, 301–313. Hald, A., 1952. Statistical theory and engineering applications, JohnWiley and Sons, New York. Hanks, T.C. & Kanamori, H., 1979. A moment magnitude scale, J. geophys. Res., 84, 2348–2350. Hartzell, S.H., 1982. Simulation of ground accelerations forMay 1980 Mammoth Lakes, California, earthquakes, Bull. seism. Soc. Am., 72, 2381– 2387. Hartzell, S., Harmsen, S., Frankel, A. & Larsen, S., 1999. Calculation of broadband time histories of ground motion: comparison of methods and validation using strong-ground motion from the 1994 Northridge earthquake. Bull. seism. Soc. Am., 89, 1484–1504. Heaton, T.H., 1982. The 1971 San Fernando earthquake: a double event? Bull. seism. Soc. Am., 72, part A, 2037–2063. Heuze, F.E., Ueng,T.S., Hutchings, L.J., Jarpe, S.P.&Kasameyer, P.W., 1994. A coupled seismic-geotechnical approach to site-specific strong motion, Soil Dyn. Earthq. Eng., 16(4), 259–272. Hutchings, L., 1991. ‘Prediction’ of strong ground motion for the 1989 Loma Prieta earthquake using empirical Green’s functions, Bull. seism. Soc. Am., 81, 88–121. Hutchings, L., 1994. Kinematic earthquake models and synthesized ground motion using empirical Green’s functions, Bull. seism. Soc. Am., 84, 1028– 1050. Hutchings, L., 2004. ProgramNetMoment, a Simultaneous Inversion for Moment, Source Corner Frequency, and Site Specific t%, Lawrence Livermore National Laboratory, Livermore, CA, UCRL-ID-135693. Hutchings, L. & Jarpe, S., 1996. Ground-motion variability at the Highway 14 and I-5 interchange in the northern San Fernando Valley, Bull. seism. Soc. Am., 86, S289–S299. Hutchings, L.&Wu, F., 1990. Empirical Green’s functions from small earthquakes: a waveform study of locally recorded aftershocks of the San Fernando earthquake, J. geophys. Res., 95, 1187–1214. Hutchings, L., Ioannidou, E., Jarpe, S. & Stavrakakis, G.N., 1997. Strong Ground Motion Synthesis for aM=7.2 Earthquake in the Gulf of Corinth, Greece Using Empirical Green’s Functions, Lawrence Livermore National Laboratory, Livermore, CA, UCRL-JC-129394. Hutchings, L.J., Jarpe, S.P., Kasameyer, P.W. & Foxall, W., 1996. Synthetic strong ground motions for engineering design utilizing empirical Green’s functions, Proc. Fourth Caltrans Seismic Research Workshop, p. 24; also presented at EleventhWorld Conference of Earthquake Engineering, Acapulco, June 23–28, 1996 (CDROM Elsevier); available from Lawrence Livermore National Laboratory, Livermore, CA, UCRL-JC-123762. Hutchings, L., Jarpe, S. & Kasameyer, P., 1998. Validation of a Ground Motion Synthesis and Prediction Methodology for the 1988, M = 6.0, Saguenay Earthquake, Lawrence Livermore National Laboratory, Livermore, CA, UCRL-JC-129395. Hutchings, L., Kasameyer, P.W.&Foxall,W., 2003. LLNL Hazard Mitigation Center Ground Motion Prediction Methodology,Lawrence Livermore National Laboratory, Livermore, CA, UCRL-ID-135697. Hutchings, L., Foxall, B., Kasameyer, P., Larsen, S., Hayek, C., Tyler- Turpin, C., Aquilino, J.&Long, L., 2005. Deep Borehole Instrumentation along San Francisco Bay Bridges: 1996–2003 and Strong Ground Motion Synthesis along the San Francisco/Oakland Bay Bridge, Final Report, Lawrence Livermore National Laboratory, Livermore, CA, UCRL-TR- 217303. Ioannidou, E., Voulgaris, N., Kalogeras, I., Hutchings, L. & Stavrakakis, G., 2001. Analysis of site response in the Athens area from the 7 September 1999, Mw = 5.9 Athens earthquake and aftershock recordings, and intensity observations, Bollettino di Geofisica Teorica ed Applicata, Special Issue on Site Response, December 2001. Jarpe, S.J. & Kasameyer, P.K., 1996. Validation of a methodology for predicting broadband strong motion time histories using kinematic rupture models and empirical Green’s functions, Bull. seism. Soc. Am., 86, 1116– 1129. Katsikatsos, G., Migiros, G., Triandaphyllis, M. & Mettos, A., 1986. Geological structure of internal Hellenides, Geolog. Geophys. Res. Special Issue, pp. 191–212, IGME, Athens. Kontoes, C., Elias, P., Sykioti,O., Briole, P., Remy,D., Sachpazi, M.,Veis, G. & Kotsis, I., 2000. Displacement field and fault model for the September 7, 1999, Athens earthquake inferred from ERS2 Satellite radar interferometry, Geophys. Res. Lett., 27, 3989–3992. Kostrov, B.V. & Das, S., 1988. Principles of earthquake source mechanics, in Cambridge Monographs on Mechanics and Applied Mathematics, Cambridge University Press, Cambridge, UK. Lee, W.H.K., Shin, T.C., Kuo, K.W., Chen, K.C. & Wu, C.F., 2001. CWB free-field strong-motion data from the 21 September Chi-Chi, Taiwan, earthquake, Bull. seism. Soc. Am., 91, 1370–1376. Louvari, E. & Kiratzi, A., 2001. Source Parameters of the September 7, 1999, Athens earthquake based on teleseismic data, J. Balkan, Geophys. Soc., 4, 51–56.Makropoulos, K., Drakopoulos, J. & Kouskoun, V., 1989. The earthquake sequence in Volos, central Greece, April 30, 1985. Analysis of strong motion, IASPEI (Abstracts), Istanbul. Mariolakos, I. & Foundoulis, I., 2000. The Athens earthquake September 7, 1999, the neotectonic regime of the affected area, Ann. Geol. Pay Helleniques, Tom. XXXVIII, Fasc. B. Mayeda, K., Hofstetter, A., O’Boyle, J.L. & Walter, W.R., 2003. Stable and transportable regional magnitudes based on coda-derived moment-rate spectra, Bull. seism. Soc. Am., 93(1), 224–239. McCallen, D., Astaneh-Asl, A., Larsen, S. & Hutchings, L., 2006. Dynamic response of the suspension spans of the San Francisco–Oakland Bay Bridge, p. 19, Proc. EERI Conf., San Francisco, CA, April 2006. National Research Council, 2003. Living on an Active Earth: Perspectives on Earthquake Science, National Academic Press, Washington, D.C. Orowan, E., 1960. Mechanism of seismic faulting, Geol. Soc. Am. Bull., 79, 323–345. Papadimitriou, P., Kassaras, G., Voulgaris, N., Kassaras, I., Delibasis, N. & Makropoulos, K., 2000. The September 7, 1999 Athens earthquake sequence recorded by the Cornet network: preliminary results of source parameters determination of the mainshock, Ann. Geol. des Pay Helleniques, Tom. XXXVIII, Fasc. B. Papadopoulos, G.A., Drakatos, G., Papanastassiou, D., Kalogeras, I. & Stavrakakis G., 2000. Preliminary results about the catastrophic earthquake of 7 September 1999 in Athens, Greece, Seismol. Res. Lett., 71(3), 318–329. Papageorgiou, A.S.&Aki, K., 1983. A specific barrier model for the quantitative description of inhomogeneous faulting and the prediction of strong ground motion, I, description of the model, Bull. Seism. Soc. Am., 73, 693–722. Papazachos, C., 1992. Anisotropic radiation modeling of macroseismic intensities for estimation of the attenuation structure of the upper crust in Greece, Pageoph, 138, 445–469. Papazachos, V. & Papazachov, K., 1997. The Earthquakes of Greece: Thessaloniki: Editions. Ziti. Pavic, R., Koller, M.G., Bard, P.-Y. & Lacave-Lachet, C., 2000. Ground motion prediction with the empirical Green’s function technique: an assessment of uncertainties and confidence level, J. Seismol., 4, 59–77. Pavlides, S.B., Papadopoulos, G. & Ganas, A., 2002. The fault that caused the Athens September 1999, Ms = 5.9 earthquake: field observations, Natural Hazards., 27, 61–84. Protonotarios, I., 1999. Preliminary conclusions from the September 7, 1999 earthquake, Workshop on the September 7, 1999, Athens Earthquake, November 2, 1999, Athens, Greece. Rosset, Ph., Wagner, J.-J., Garcia-Fernandez, M. & Jimenez, M.J., 1998. Strong Ground Motion Simulation with Empirical Green’s Functions; First Attempts in the Framework of the European Project SERGISAI. EC Environment Research Programme, Climatology and Natural Hazards (1994–1998). Roumelioti, Z., Dreger, D., Kiratzi, A. & Theodoulidis, N., 2003. Slip distribution of the 7 September 1999 Athens earthquake inferred from empirical Green’s function study, Bull. seism. Soc. Am., 93, 775–782. Roumelioti, Z., Kiratzi, A. & Theodoulidis, N., 2004. Stochastic strong ground motion simulation of the 7 September 1999 Athens (Greece) earthquake, Bull. seism. Soc. Am., 94, 1036–1052. Schulz, C.H., 2002. The Mechanics of Earthquakes and Faulting, Cambridge University Press, New York, NY, p. 471. Scognamiglio, L., 2004. A test of ground motion prediction methods that utilize small earthquakes, PhD dissertation, Institute of Volcanology and Geophysics, Rome, Italy. Scognamiglio, L., Hutchings, L., Akinci, A.&Foxall,W., 2005. Finite source strong ground motion synthesis with pseudo Green’s functions, Abs. Am. Geophys. Union, San Francisco. Sibson, R.H., 1982. Fault Zone Models, Heat Flow and the Depth Distribution of Earthquakes in the Continental Crust of the United States, Bull. seism. Soc. Am., 72, 151–16. Somerville, P. et al., 1999. Characterizing crustal earthquake slip models for the prediction of strong ground motion, Seism. Res. Lett., 70(1), 59– 80. Spudich, P. & Frazier, L.N., 1984. Use of ray theory to calculate highfrequency radiation from earthquake sources having spatially variable rupture velocity and stress drop, Bull. seism. Soc. Am., 74, 2061– 2082. Stavrakakis, G., 1999. The Athens earthquake of September 7, 1999, Newsletter of the European Centre on Prevention and Forecasting of Earthquakes, 3, 26–29. Stavrakakis, G.N., Kalogeras, I.S. & Drakopoulos, J.C., 1993. Preliminary analysis of Greek accelerograms recorded at stations of NOA’s network: time period 1973–1990, Proc. 2nd Congress Hellenic Geophys. Union, Florina, Greece, 5–7 May, pp. 175–191. Steidl, J.H., Tumarkin, A.G. & Archuleta, R.J., 1996. What is a reference site? Bull. seism. Soc. Am., 86, 1733–1748. Trifunac, M.D. & Lee, V.W., 1973. Routine computer processing of strongmotion accelerograms, EERI, 73(03). Tse, S.T. & Rice, J.R., 1986. Crustal earthquake instability in relation to the depth variation of frictional slip properties, J. geophys. Res., 91, 9452– 9472. Tselentis, G-A. & Zahradnik, J., 1999. Aftershock monitoring of the Athens earthquake of 7 September 1999, Seism. Res. Lett., 71(3), 330–337. Tumarkin, A., 1997. Energy constraints on synthesis of strong ground motion, Abs. Am. Geophys. Union, San Francisco. Voulgaris, N., Kassaras, I., Papadimitriou, P. & Delibasis, N., 2000. Preliminary results of the Athens September 7, 1999 aftershock sequence, Ann. Geol. des Pay Helleniques, Tom. XXXVIII, Fasc. B. Wells, D.L. & Coppersmith, K.J., 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement, Bull. seism. Soc. Am., 84, 974–1002. Wossner, J., Treml, M. & Wenzel, F., 2002. Simulation of Mw = 6.0 earthquakes in the Upper Rhinegraben using empirical Green functions, Geophys. J. Int., 151, 487–500. Zollo, A., Bobbio, A., Emolo, A., Herreo, A. & De Natale, G., 1997. Modeling of ground acceleration in the near source range: the case of the 1976, Friuli earthquake (M = 6.5), northern Italy, J. Seismol., 1, 305–319.en
dc.description.obiettivoSpecifico4.1. Metodologie sismologiche per l'ingegneria sismicaen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorHutchings, L.en
dc.contributor.authorIoannidou, E.en
dc.contributor.authorFoxall, W.en
dc.contributor.authorVoulgaris, N.en
dc.contributor.authorSavy, J.en
dc.contributor.authorKalogeras, I.en
dc.contributor.authorScognamiglio, L.en
dc.contributor.authorStavrakakis, G.en
dc.contributor.departmentLawrence Livermore National Laboratory, Hazards Mitigation Center, PO Box 808, L-201, Livermore, CA 94551-0808, USA.en
dc.contributor.departmentDepartment of Geophysics-Geothermics, University of Athens, Athens 15783, Greeceen
dc.contributor.departmentLawrence Livermore National Laboratory, Hazards Mitigation Center, PO Box 808, L-201, Livermore, CA 94551-0808, USA.en
dc.contributor.departmentDepartment of Geophysics-Geothermics, University of Athens, Athens 15783, Greeceen
dc.contributor.departmentLawrence Livermore National Laboratory, Hazards Mitigation Center, PO Box 808, L-201, Livermore, CA 94551-0808, USA.en
dc.contributor.departmentInstitute of Geodynamics, National Observatory of Athens, Athens, Greeceen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
dc.contributor.departmentInstitute of Geodynamics, National Observatory of Athens, Athens, Greeceen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptLawrence Livermore National Laboratory, Hazards Mitigation Center, PO Box 808, L-201, Livermore, CA 94551-0808, USA.-
crisitem.author.deptDepartment of Geophysics-Geothermics, University of Athens, Athens 15783, Greece-
crisitem.author.deptLawrence Livermore National Laboratory, Hazards Mitigation Center, PO Box 808, L-201, Livermore, CA 94551-0808, USA.-
crisitem.author.deptDepartment of Geophysics-Geothermics, University of Athens, Athens 15783, Greece-
crisitem.author.deptLawrence Livermore National Laboratory, Hazards Mitigation Center, PO Box 808, L-201, Livermore, CA 94551-0808, USA.-
crisitem.author.deptNational Observatory of Athens, Geodynamic Institute, Athens, Greece-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptNational Observatory of Athens, Institute of Geodynamics, Athens, Greece-
crisitem.author.orcid0000-0002-5437-5276-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Hutchings_etal_gji_2007.pdf1.02 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

38
checked on Feb 10, 2021

Page view(s) 50

185
checked on Apr 17, 2024

Download(s)

28
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric