Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/2874
DC FieldValueLanguage
dc.contributor.authorallCosta, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallChiodini, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallGranieri, D.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallFolch, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallHankin, R. K. S.; National Oceanography Centre, Southampton, UKen
dc.contributor.authorallCaliro, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallAvino, R.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallCardellini, C.; Dipartimento Scienze della Terra, Università di Perugia, Italy.en
dc.date.accessioned2007-11-27T16:00:52Zen
dc.date.available2007-11-27T16:00:52Zen
dc.date.issued2008en
dc.identifier.urihttp://hdl.handle.net/2122/2874en
dc.description.abstractSeveral non-volcanic sources in central Italy emit a large amount of carbon dioxide (CO2). Under stable atmospheric conditions and/or in presence of topographic depressions, the concentration of CO2, which has a molecular mass greater than that of air, can reach high values that are lethal to humans or animals. Several episodes of this phenomenon were recorded in central Italy and elsewhere. In order to validate a model for the dispersion of a heavy gas and to assess the consequent hazard, we applied and tested the code TWODEE-2, an improved version of the established TWODEE model, which is based on a shallow layer approach that uses depth-averaged variables to describe the flow behavior of dense gas over complex topography. We present results for a vented CO2 release at Caldara di Manziana in central Italy. We find that the model gives reliable results when the input quantity can be properly defined. Moreover, we show that the model can be a useful tool for gas hazard assessment, by evaluating where and when lethal concentrations for humans and animal are reached.Several non-volcanic sources in central Italy emit a large amount of carbon dioxide (CO2). Under stable atmospheric conditions and/or in presence of topographic depressions, the concentration of CO2, which has a molecular mass greater than that of air, can reach high values that are lethal to humans or animals. Several episodes of this phenomenon were recorded in central Italy and elsewhere. In order to validate a model for the dispersion of a heavy gas and to assess the consequent hazard, we applied and tested the code TWODEE-2, an improved version of the established TWODEE model, which is based on a shallow layer approach that uses depth-averaged variables to describe the flow behavior of dense gas over complex topography. We present results for a vented CO2 release at Caldara di Manziana in central Italy. We find that the model gives reliable results when the input quantity can be properly defined. Moreover, we show that the model can be a useful tool for gas hazard assessment, by evaluating where and when lethal concentrations for humans and animal are reached.Several non-volcanic sources in central Italy emit a large amount of carbon dioxide (CO2). Under stable atmospheric conditions and/or in presence of topographic depressions, the concentration of CO2, which has a molecular mass greater than that of air, can reach high values that are lethal to humans or animals. Several episodes of this phenomenon were recorded in central Italy and elsewhere. In order to validate a model for the dispersion of a heavy gas and to assess the consequent hazard, we applied and tested the code TWODEE-2, an improved version of the established TWODEE model, which is based on a shallow layer approach that uses depth-averaged variables to describe the flow behavior of dense gas over complex topography. We present results for a vented CO2 release at Caldara di Manziana in central Italy. We find that the model gives reliable results when the input quantity can be properly defined. Moreover, we show that the model can be a useful tool for gas hazard assessment, by evaluating where and when lethal concentrations for humans and animal are reached.Several non-volcanic sources in central Italy emit a large amount of carbon dioxide (CO2). Under stable atmospheric conditions and/or in presence of topographic depressions, the concentration of CO2, which has a molecular mass greater than that of air, can reach high values that are lethal to humans or animals. Several episodes of this phenomenon were recorded in central Italy and elsewhere. In order to validate a model for the dispersion of a heavy gas and to assess the consequent hazard, we applied and tested the code TWODEE-2, an improved version of the established TWODEE model, which is based on a shallow layer approach that uses depth-averaged variables to describe the flow behavior of dense gas over complex topography. We present results for a vented CO2 release at Caldara di Manziana in central Italy. We find that the model gives reliable results when the input quantity can be properly defined. Moreover, we show that the model can be a useful tool for gas hazard assessment, by evaluating where and when lethal concentrations for humans and animal are reached.Several non-volcanic sources in central Italy emit a large amount of carbon dioxide (CO2). Under stable atmospheric conditions and/or in presence of topographic depressions, the concentration of CO2, which has a molecular mass greater than that of air, can reach high values that are lethal to humans or animals. Several episodes of this phenomenon were recorded in central Italy and elsewhere. In order to validate a model for the dispersion of a heavy gas and to assess the consequent hazard, we applied and tested the code TWODEE-2, an improved version of the established TWODEE model, which is based on a shallow layer approach that uses depth-averaged variables to describe the flow behavior of dense gas over complex topography. We present results for a vented CO2 release at Caldara di Manziana in central Italy. We find that the model gives reliable results when the input quantity can be properly defined. Moreover, we show that the model can be a useful tool for gas hazard assessment, by evaluating where and when lethal concentrations for humans and animal are reached.en
dc.language.isoEnglishen
dc.relation.ispartofGeochemistry,Geophysics,Geosystemsen
dc.subjectapplicationen
dc.subjecthazard assessmenten
dc.subjectCaldara di Manzianaen
dc.titleA shallow layer model for heavy gas dispersion from natural sources: application and hazard assessment at Caldara di Manziana, Italy.en
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistryen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.01. Gasesen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniquesen
dc.identifier.doi10.1029/2007GC001762en
dc.relation.referencesBaxter, P. J., 2000. Gases. In: P. J. Baxter, P.H. Adams, T.-C. Aw, A. Cockcroft and J.M. Harrington (Editors), Hunter’s Diseases of Occupations. Arnold, London, 123-178. Baxter, P. J., Baubron, J-C., Coutinho, R., 1999. Health hazards and disaster potential of ground gas emissions at Furnas volcano, São Miguel, Azores. J. Volcanol. Geotherm. Res., 92 (1-2), 95- 106. Beaubien, S.E., Ciotoli, G., Lombardi, S., 2003. Carbon dioxide and radon gas hazard in the Alban Hills area (central Italy). J. Volcanol. Geotherm. Res., 123, 63-80. Blackmore, D., Herman, M., Woodward, J., 1982. Heavy gas dispersion models. J. Hazard. Mater. 6, 107–128. Burguete, J., Garcia-Navarro, P., Aliod, R., 2002. Numerical simulation of runoff from extreme rainfall events in a mountain water catchment. Nat. Haz. Earth Syst. Sci. 2, 109–117. Carapezza, M. L., Badalamenti, B, Cavarra, L. and Scalzo, A. (2003). Gas hazard assessment in a densely inhabited area of Colli Albani volcano (Cava dei Selci, Roma). J. Volcanol. Geotherm. Res., 123 (1-2), 81-94. Cardellini, C., Chiodini, G. and Frondini, F., 2003. Application of stochastic simulation to CO2 flux from soil: Mapping and quantification of gas release. J. Geophys. Res., 108(B9): 2425-2437. Chiodini, G., Cardellini, C., Amato, A., Boschi, E., Caliro, S., Frondini, F. & Ventura, G. 2004. Carbon dioxide Earth degassing and seismogenesis in central and southern Italy. Geophys. Res. Lett., 31, L07615, doi:10.1029/2004GL019480. Chiodini, G., Cioni, R., Guidi, M., Raco, B. and Marini, L., 1998. Soil CO2 flux measurements in volcanic and geothermal areas. Applied Geochemistry, 13(5): 543-552. Chiodini, G., Frondini, F., Cardellini, C., Parello, F. & Peruzzi, L. 2000. Rate of diffuse carbon dioxide Earth degassing estimated from carbon balance of regional aquifers: The case of central Apennine, Italy.J. Geophys. Res.-Solid Earth, 105, 8423-8434. Chiodini G., Frondini F., Cardellini C., Granieri D., Marini L., Ventura G. 2001. CO2 Degassing and Energy Release at Solfatara Volcano, Campi Flegrei, Italy. J. Geophys. Res., 106 (B8): 16213-16221. Chiodini, G., Frondini, F., Kerrick, D. M., Rogie, J., Parello, F., Peruzzi, L. & Zanzari, A. R. 1999. Quantification of deep CO2 fluxes from Central Italy. Examples of carbon balance for regional aquifers and of soil diffuse degassing. Chemical Geology, 159, 205-222. Chiodini, G., Frondini, F., Raco, B., 1996. Diffuse emission of CO2 from the Fossa crater, Vulcano Island (Italy). Bulletin of Volcanology, 58(1): 41-50. Clarke, T., 2001. Taming Africa’s killer lake. Nature 409, 554–555. Collettini, C., Cardellini, C., Chiodini, G., De Paola, N., Holdsworth, R.E., Smith, S.A.F, 2007. Fault weakening due to CO2 involvement in the extension of the Northern Apennines: short- and long-term processes. The internal structures of fault zones: fluid flow and mechanical properties. Geological Society of London, Special Publication, in press. Deutsch, C.V. and Journel, A.G., 1998. GSLIB: Geostatistical Software Library and Users Guide. Applied Geostatistics Series. Oxford Univerity Press, New York Oxford, 369 pp. Douglas, S. and Kessler, R.C., 1990. User's Manual for the Diagnostic Wind Model, EPA-450/4- 90-007C, ed. Carr, L., Volume III, San Rafael, CA, USA. Ermak, D., 1990. User’s manuals for SLAB: An atmospheric dispersion model for denser-thenair releases. Tech. rep., UCRL-MA-105607, Lawrence Livermore National Laboratory, CA. Evans, W. C., M. L. Sorey, B. M. Kennedy, D. A. Stonestrom, J. D. Rogie, and D. L. Shuster. 2001 High CO2 emissions through porous media: Transport mechanisms and implications for flux measurement and fractionation, Chem. Geol., 177(1– 2), 15–29. Faivre-Pierret, R. and Le Guern, F., 1983. Health risks linked with inhalation of volcanic gases and aerosols. In: H. Tazieff and J.C. Sabroux (Editors), Forecasting Volcanic Events. Elsevier Science Publishers B.V., Amsterdam, 69-81. Folch, A., Costa, A., Hankin, R.K.S.. 2007. TWODEE-2: a shallow layer model for dense gas dispersion on complex topography. Computer & Geosciences, accepted. Frondini F., Chiodini G., Caliro S., Cardellini C., Granieri D. and Ventura G. (2004) Diffuse CO2 degassing at Vesuvio, Italy. Bulletin of Volcanology, 66/7, 642-651, doi:10.1007/s00445-004- 0346-x. Gerlach, T.M, Dokas, M.P., McGee, K.A., 1998. Three-year decline of magmatic CO2 emissions from soils of a Mammoth Mountain tree kill: Horseshoe Lake, CA, 1995-1997. Geophysical Research Letters, 25 (11), L07615, 1947-1950. Gianelli G. 1985. On the origin of geothermal CO2 by metamorphic processes. Bull. Soc. Geol. Italy, 104, 575-584, 1985 Giggenbach, W.F., Sano Y., and Schminckle H.U. 1991. CO2-rich gases from Lakes Nyos and Monoun, Camerron; Laacher See, Germany; Dieng, Indonesia and Mt. Gambier, Australia – variations on a common theme. J. Volcanol. Geotherm. Res., 45, 311-323. Giggenbach, W.F., 1990. Water and gas chemistry of Lake Nyos and its bearing on the eruptive process, J. Volcanol. Geotherm. Res., 42, 337-362. Granieri, D., M. L. Carapezza, G. Chiodini, R. Avino, S. Caliro, M. Ranaldi, T. Ricci, and L. Tarchini (2006) Correlated increase in CO2 fumarolic content and diffuse emission from La Fossa crater (Vulcano, Italy): Evidence of volcanic unrest or increasing gas release from a stationary deep magma body?. Geophys. Res. Lett., 33, L13316, doi:10.1029/2006GL026460. Hankin, R.K.S., Britter, R. E., 1999a. TWODEE: the Health and Safety Laboratory’s shallow layer model for heavy gas dispersion. Part 1. Mathematical basis and physical assumptions. J. Hazard. Mater. A66, 211–226. Hankin, R.K. S., Britter, R E., 1999b. TWODEE: the Health and Safety Laboratory’s shallow layer model for heavy gas dispersion. Part 2. Outline and validation of the computational scheme. J. Hazard. Mater. A66, 227–237. Hankin, R. K. S. , Britter, R. E., 1999c. TWODEE: the Health and Safety Laboratory’s shallow layer model for heavy gas dispersion. Part 3. Experimental validation (Thorney island). J. Hazard. Mater. A66, 239–261. Hankin, R.K. S. 2003a. Heavy gas dispersion: integral models and shallow layer models. Journal of Hazardous Materials, A013, 1-10. Hankin , R. K. S. 2003b. Shallow layer simulation of heavy gas released on a slope in calm ambient. Part 1: continuous releases. Journal of Hazardous Materials, A103, 205-215. Hankin , R. K. S. 2003c. Shallow layer simulation of heavy gas released on a slope in calm ambient. Part 2: instantaneous releases. Journal of Hazardous Materials, A103, 217-229. Hankin 2004a. Major hazard risk assessment over non-flat terrain. Part 1: continuous releases. Atmospheric Environment 38, 695-705. Hankin 2004b. Major hazard risk assessment over non-flat terrain. Part 2: instantaneous releases. Atmospheric Environment 38, 707-714. Heinrich, P., Piatanesi, A., Hébert, H., 2001. Numerical modelling of tsunami generation and propagation from submarine slumps: the 1998 Papua New Guinea event. Geophys. J. Int. 145, 97–111. Jacobson, M., 1999. Fundamentals of atmospheric modelling. 1st edition. Cambridge University Press, New York. LeGuern, F., Tazieff, H. and Faivre Pierret, R., 1982. An example of health hazard: people killed by gas during a phreatic eruption, Dieng Plateau (Java, Indonesia), February 20th, 1979, Bull. Volc.,45, 153-156. Louis, J., 1979. A parametric model of vertical eddy fluxes in the atmosphere. Bounday Layer Meteor. 12, 187-202. Minissale, A. 2004. Origin, transport and discharge of CO2 in central Italy. Earth-Science Reviews, 66, 89-141. National Institute for Occupational Safety and Health (NIOSH), 1997. NIOSH Pocket Guide to Chemical Hazard. DHHS (NIOSH) Publication N. 97-140. Washington, D.C. U.S. Government Printing Office. National Institute for Occupational Safety and Health (NIOSH), 1981. Occupational Health Guidelines for Chemical Hazards, DHHS (NIOSH) Publication N. 81-123. Washington, D.C. U.S. Government Printing Office. Oldenburg, C.M. Unger, J.A., 2003. On Leakage and Seepage from Geological Carbon Sequestration Sites: Unsatured Zone Attenuation. Vadose Zone Journal, 2, 287-296. Oldenburg, C.M. Unger, J.A., 2004. Coupled Vadose Zone and Atmospheric Surface-Layer Transport of Carbon Dioxide from Geologic Carbon Sequestration Sites. Vadose Zone Journal, 3, 848-857. Rogie, J.D., Kerrick, D.M., Chiodini, G., Frondini, F., 2000. Flux measurements of nonvolcanic CO2 emission from some vents in central Italy. J. Geophys. Res. 105 (B4), 8435–8445. Rogie, J.D., Kerrick, D.M., Chiodini, G., Sorry, M.L., Virgili, G., 1998. Continuous monitoring of diffuse CO2 degassing, Horseshoe Lake, Mammoth Mountain, CA. AGU Fall Mtg., EOS Trans. 79 (45), F941 (suppl.). Spicer, T., Havens, J., 1989. DEGADIS - DEnse GAs DISpersion Model. Tech. rep., EPA- 450/4-89-0019, San Rafael, CA. Sigurdsson, H., Devine, J.D., Tchoua, F.M., Presser, T.S., Pringle, M.K.W. and Evans, W.C., 1987. Origin of the lethal gas burst from Lake Monoun, Cameroon. J. Volcanol. Geotherm. Res., 31, 1-16. Venetsanos, A., Bartzis, J., Wurtz, J., Papailiou, D., 2003. DISPLAY-2: a two-dimensional shallow layer model for dense gas dispersion including complex features. J. Hazard. Mater. A99, 111–144. Welles, J. M., T. H. Demetriades-Shah, and D. K. McDermitt, Considerations for measuring ground CO2 effluxes with chambers, Chem. Geol., 177(1– 2), 3 – 13, 2001. Witlox, H., 1994. The HEGADAS model for ground-level heavy-gas dispersion - i. steady-state model. Atmos. Environ. 28 (18), 2917–2932. Zalesak, S.T., 1979. Fully multidimensional flux-corrected method transport for fluid. J. Comp. Phys. 31, 335-362.en
dc.description.obiettivoSpecifico1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attiveen
dc.description.obiettivoSpecifico2.4. TTC - Laboratori di geochimica dei fluidien
dc.description.obiettivoSpecifico4.5. Degassamento naturaleen
dc.description.journalTypeJCR Journalen
dc.description.fulltextopenen
dc.contributor.authorCosta, A.en
dc.contributor.authorChiodini, G.en
dc.contributor.authorGranieri, D.en
dc.contributor.authorFolch, A.en
dc.contributor.authorHankin, R. K. S.en
dc.contributor.authorCaliro, S.en
dc.contributor.authorAvino, R.en
dc.contributor.authorCardellini, C.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentNational Oceanography Centre, Southampton, UKen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentDipartimento Scienze della Terra, Università di Perugia, Italy.en
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italia-
crisitem.author.deptBarcelona Supercomputing Center, Barcelona, Spain-
crisitem.author.deptNational Oceanography Centre, European Way, Southampton SO14 3ZH, UK-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptDipartimento di fisica e Geologia di Perugia-
crisitem.author.orcid0000-0002-4987-6471-
crisitem.author.orcid0000-0002-0628-8055-
crisitem.author.orcid0000-0003-2831-723X-
crisitem.author.orcid0000-0002-0677-6366-
crisitem.author.orcid0000-0002-8522-6695-
crisitem.author.orcid0000-0003-2686-220X-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Manuscripts
Files in This Item:
File Description SizeFormat
CosChi_2007.pdf1.33 MBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations 50

25
checked on Feb 10, 2021

Page view(s) 50

182
checked on Apr 17, 2024

Download(s) 10

547
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric