Earth-prints repository, logo   DSpace

About DSpace Software
|earth-prints home page | roma library | bologna library | catania library | milano library | napoli library | palermo library
Please use this identifier to cite or link to this item:

Authors: Caliro, S.*
Chiodini, G.*
Moretti, R.*
Avino, R.*
Granieri, D.*
Russo, M.*
Fiebig, J.*
Title: The origin of the fumaroles of La Solfatara (Campi Flegrei, South Italy)
Title of journal: Geochimica et Cosmochimica Acta
Series/Report no.: 71 (2007)
Publisher: Elsevier
Issue Date: 2007
DOI: 10.1016/j.gca.2007.04.007
Keywords: origin of the fumaroles
Abstract: The analysis of gaseous compositions from Solfatara (Campi Flegrei, South Italy) fumaroles since the early 1980s, clearly reveals a double thermobarometric signature. A first signature at temperatures of about 360 C was inferred by methanebased chemical–isotopic geoindicators and by the H2/Ar geothermometer. These high temperatures, close to the critical point of water, are representative of a deep zone where magmatic gases flash the hydrothermal liquid, forming a gas plume. A second signature was found to be at around 200–240 C. At these temperatures, the kinetically fast reactive species (H2 and CO) re-equilibrate in a pure vapor phase during the rise of the plume. A combination of these observations with an original interpretation of the oxygen isotopic composition of the two dominant species, i.e. H2O and CO2, shed light on the origin of fumarolic fluids by showing that effluents are mixture between fluids degassed from a magma body and the vapor generated at about 360 C by the vaporization of hydrothermal liquids. A typical ‘andesitic’ water type (dD 20&, d18O 10&) and a CO2-rich composition ðXCO2 0:4Þ has been inferred for the magmatic fluids, while for the hydrothermal component a meteoric origin and a CO2 fugacity fixed by fluid-rock reaction at high temperatures have been estimated. In the time the fraction of magmatic fluids in the fumaroles increased (up to 0.5) at each seismic and ground uplift crisis (bradyseism) which occurred at Campi Flegrei, suggesting that bradyseismic crises are triggered by periodic injections of CO2-rich magmatic fluids at the bottom of the hydrothermal system
Appears in Collections:04.08.06. Volcano monitoring
04.04.12. Fluid Geochemistry
Papers Published / Papers in press

Files in This Item:

File SizeFormatVisibility
CalChi 2007.pdf1.32 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Share this record




Stumble it!



Valid XHTML 1.0! ICT Support, development & maintenance are provided by CINECA. Powered on DSpace Software. CINECA