Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/2811
DC FieldValueLanguage
dc.contributor.authorallDanesi, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.authorallBannister, S.; GNS Science, PO Box 30368, Lower Hutt, New Zealanden
dc.contributor.authorallMorelli, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.date.accessioned2007-11-19T08:08:40Zen
dc.date.available2007-11-19T08:08:40Zen
dc.date.issued2007-01-15en
dc.identifier.urihttp://hdl.handle.net/2122/2811en
dc.description.abstractThe inner regions of the Antarctic continent are generally regarded as nearly aseismic, although microseismicity is known to occur beneath some outlet ice streams, related to the interaction between the fast flowing ice and the bedrock. Here we show the occurrence of unusual earthquakes beneath an Antarctic outlet glacier that share almost the same magnitude, pointing to the repeated rupture of a single asperity. These seismic events produce waveforms with very high similarity and uncommon spectrum and are tightly clustered in space but, unlike other reported instances of repeating earthquakes on a patch of the San Andreas Fault, they occur in frequent irregular swarms. Evidence locates these events at the rock–ice interface under the glacier, and shows the existence of stick–slip motion on a smaller scale than the large slow slip events detected by global seismographs. Seismic behaviour of large glaciers can presumably be connected to surges in ice motion. This study determines a little known environment for fracture dynamics studies, while also contributing to the understanding of the coupling processes between fast flowing glaciers and bedrock that influence ice stream evolution and stability.en
dc.description.sponsorshipProgetto Nazionale di Ricerca in Antartide (PNRA) Antarctica New Zealand (ANZ)en
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofEarth and Planetary Science Lettersen
dc.relation.ispartofseries253 (2007)en
dc.subjectGlacial earthquakesen
dc.subjectGlacial dynamicsen
dc.subjectGutenberg-Richter relationshipen
dc.subjectDouble-difference hypocentre locationen
dc.subjectRepeating earthquakeen
dc.titleRepeating earthquakes from rupture of an asperity under an Antarctic outlet glacieren
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber151–158en
dc.identifier.URLhttp://www.elsevier.com/locate/epslen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamicsen
dc.identifier.doi10.1016/j.epsl.2006.10.023en
dc.relation.references[1] A.C. Johnston, Suppression of earthquakes by large continental ice sheets, Nature 330 (1987) 467–469. [2] A. Reading, Antarctic seismicity and neotectonics, in: Royal Society of New Zealand (Eds.) Antarctica at the close of a Millennium, R. Soc. NZ Bull., 35, 2002, pp 479–484. [3] S. Bannister, B.L.N. Kennett, Seismic activity in the Transantarctic Mountains—results from a broadband array deployment, Terra Antartica 9 (2002) 41–46. [4] M. Frezzotti, A. Capra, L. Vittuari, Comparison between glacier ice velocities inferred from GPS and sequential satellite images, Ann. Glaciol. 27 (1998) 54–60. [5] M. Frezzotti, I.E. Tabacco, A. Zirizzotti, Ice discharge of eastern dome C drainage area, Antarctica, determined from airborne radar survey and satellite image, Analysis, J. Glaciol. 46 (2000) 253–264. [6] V. Damm, Subice morphology deduced by Radio Echo Soundings (RES) in the area between David and Mawson Glaciers, Victoria Land, Geol. Jahrb. B89 (1996) 321–331. [7] I.E. Tabacco, C. Bianchi, M. Chiappini, A. Zirizzotti, E. Zuccheretti, Analysis of bottom morphology of the David Glacier–Drygalski Ice Tongue, East Antarctica, Ann. Glaciol. 30 (2000) 47–51. [8] M. Frezzotti, L. Vittuari, V. Maggi, Preliminary GPS measurement of David Glacier and Drygalski Ice Tongue, Terra Antartica Rep. 1 (1997) 13–17. [9] M.R. Bennett, Ice streams as the arteries of an ice sheet: their mechanics, stability and significance, Earth Sci. Rev. 61 (2002) 309–339. [10] R.B. Alley, D.D. Blankenship, C.R. Bentley, S.T. Rooney, Deformation of till beneath ice stream B,West Antarctica, Nature 322 (1986) 57–59. [11] W.S.B. Paterson, The Physics of Glaciers, third ed.Pergamon, Oxford, 1994. [12] R.LeB. Hooke, Principles of Glacier Mechanics, first ed.Cambridge Univ. Press, Cambridge, 2005. [13] G. Ekström, M. Nettles, G.A. Abers, Glacial earthquakes, Science 302 (2003) 622–624. [14] S. Anandakrishnan, R.B. Alley, Tidal forcing of basal seismicity of ice stream C,West Antarctica, observed far inland, J. Geophys. Res. 102 (1997) 15183–15196. [15] S. Anandakrishnan, C.R. Bentley, Micro-earthquakes beneath Ice Streams B and C, West Antarctica: observations and implications,, J. Glaciol. 39 (1993) 455–462. [16] W.L. Wolf, J.N. Davies, Glacier-generated earthquakes from Prince William Sound, Alaska, Bull. Seismol. Soc. Am. 76 (2) (1986) 367–379. [17] W.B. Kamb, Rheological nonlinearity and flow instability in the deforming bed mechanism of ice stream motion, J. Geophys. Res. 96 (1991) 16585–16595. [18] F.W. Klein, User's guide to HYPOINVERSE-2000, a fortran program to solve for earthquake locations and magnitudes, U.S. Geol. Survey Open File Report, 2002, pp. 02–171. [19] F. Waldhauser, hypoDD — a program to compute Double- Difference hypocentre locations, U.S. Geol. Survey Open File Report, 2001, pp. 01–113. [20] W.X. Du, C.H. Thurber, M. Reyners, D. Eberhart-Phillips, H.J. Zhang, New constraints on seismicity in theWellington region of New Zealand from relocated earthquake hypocentres, Geophys. J. Int. 158 (2004) 1088–1102. [21] E. Rignot, Mass balance of East Antarctic glaciers and ice shelves from satellite data, Ann. Glaciol. 34 (2002) 217–227. [22] J.N. Brune, Tectonic stress and spectra of seismic shear waves from earthquakes, J. Geophys. Res. 75 (1970) 4997–5009. [23] I.A. Beresnev, What we can and cannot learn about earthquake sources from the spectra of seismic waves, Bull. Seismol. Soc. Am. 91 (2) (2001) 397–400. [24] I.A. Beresnev, Source parameters observable from the corner frequency of earthquake spectra, Bull. Seismol. Soc. Am. 92 (5) (2002) 2047–2048. [25] F. Salvini, F. Storti, Cenozoic tectonic lineaments of the Terra Nova Bay region, Ross Embayment, Antarctica, Gl. Planet. Ch. 23 (1999) 129–144. [26] B. Gutenberg, C.F. Richter, Frequency of earthquakes in California, Bull. Seismol. Soc. Am. 34 (1944) 185–188. [27] Z. Olami, H.J.S. Feder, K. Christensen, Self-organized criticality in a continuous, nonconservative cellular automaton modeling earthquakes, Phys. Rev. Lett. 68 (1992) 1244–1247. [28] R.M. Nadeau, T.V. McEvilly, Clustering and periodic recurrence of microearthquakes on the San-Andreas Fault at Parkfield, California, Science 267 (1995) 503–507. [29] R.M. Nadeau, T.V. McEvilly, Seismological studies at Parkfield V: characteristic microearthquake sequences as fault-zone drilling targets, Bull. Seismol. Soc. Am. 87 (6) (1997) 1463–1472. [30] R.M. Nadeau, L.R. Johnson, Seismological studies at Parkfield VI: moment release rates and estimates of source parameters for small repeating earthquakes, Bull. Seismol. Soc. Am. 88 (3) (1998) 790–814. [31] C.G. Sammis, R.M. Nadeau, L.R. Johnson, How strong is an asperity? J. Geophys. Res. 104 (1999) 10609–10619. [32] C.G. Sammis, J.R. Rice, Repeating earthquakes as low-stressdrop events at a border between locked and creeping fault patches, Bull. Seismol. Soc. Am. 91 (3) (2001) 532–537. [33] R.B. Alley, In search of ice–stream sticky spots, J. Glaciol. 39 (1993) 447–454. [34] The DWcluster events primarily occurred on Julian days 337–340, 345–346, and 362–364 (2003). [35] I. Joughin, S. Tulaczyk, M. Fahnestock, R. Kwok, A mini-surge on the Ryder Glacier, Greenland, observed by satellite radar interferometry, Science 274 (1996) 228–230. [36] P. Wessel, W.H.F. Smith, New version of the Generic Mapping Tools released, EOS, Trans. Am. Geophys. Un. 76 (1995) 329en
dc.description.obiettivoSpecifico3.3. Geodinamica e struttura dell'interno della Terraen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorDanesi, S.en
dc.contributor.authorBannister, S.en
dc.contributor.authorMorelli, A.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.departmentGNS Science, PO Box 30368, Lower Hutt, New Zealanden
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptGNS Science, NZ-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.orcid0000-0002-7884-8242-
crisitem.author.orcid0000-0002-7400-8676-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
07101509321808696.pdfMain article1.22 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

34
checked on Feb 10, 2021

Page view(s)

292
checked on Apr 24, 2024

Download(s)

25
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric