Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/2676
DC FieldValueLanguage
dc.contributor.authorallSteinbrecht, W.; Meteorologisches Observatorium Hohenpeißenberg, Deutscher Wetterdienst, Hohenpeißenberg, Germanyen
dc.contributor.authorallHaßler, B.; Meteorologisches Observatorium Hohenpeißenberg, Deutscher Wetterdienst, Hohenpeißenberg, Germanyen
dc.contributor.authorallBruhl, C.; Chemie der Atmosph¨are, Max Planck Institut f¨ur Chemie, Mainz, Germanyen
dc.contributor.authorallDameris, C.; Institut f¨ur Physik der Atmosph¨are, Deutsches Zentrum f¨ur Luft und Raumfahrt, Oberpfaffenhofen, Germanyen
dc.contributor.authorallGiorgetta, M.; Atmosph¨are im Erdsystem, Max Planck Institut f¨ur Meteorologie, Hamburg, Germanyen
dc.contributor.authorallGrewe, V.; Institut f¨ur Physik der Atmosph¨are, Deutsches Zentrum f¨ur Luft und Raumfahrt, Oberpfaffenhofen, Germanyen
dc.contributor.authorallManzini, E.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.authorallMatthes, S.; Atmosph¨are im Erdsystem, Max Planck Institut f¨ur Meteorologie, Hamburg, Germanyen
dc.contributor.authorallSchnadt, C.; Institut f¨ur Physik der Atmosph¨are, Deutsches Zentrum f¨ur Luft und Raumfahrt, Oberpfaffenhofen, Germanyen
dc.contributor.authorallSteil, B.; Chemie der Atmosph¨are, Max Planck Institut f¨ur Chemie, Mainz, Germanyen
dc.contributor.authorallWinkler, P.; Meteorologisches Observatorium Hohenpeißenberg, Deutscher Wetterdienst, Hohenpeißenberg, Germanyen
dc.date.accessioned2007-10-15T12:46:51Zen
dc.date.available2007-10-15T12:46:51Zen
dc.date.issued2006en
dc.identifier.urihttp://hdl.handle.net/2122/2676en
dc.description.abstractWe report results from a multiple linear regression analysis of long-term total ozone observations (1979 to 2000, by TOMS/SBUV), of temperature reanalyses (1958 to 2000, NCEP), and of two chemistry-climate model simulations (1960 to 1999, by ECHAM4.L39(DLR)/CHEM (=E39/C), and MAECHAM4-CHEM). The model runs are transient experiments, where observed sea surface temperatures, increasing source gas concentrations (CO2, CFCs, CH4, N2O, NOx), 11-year solar cycle, volcanic aerosols and the quasi-biennial oscillation (QBO) are all accounted for. MAECHAM4-CHEM covers the atmosphere from the surface up to 0.01 hPa ( 80 km). For a proper representation of middle atmosphere (MA) dynamics, it includes a parametrization for momentum deposition by dissipating gravity wave spectra. E39/C, on the other hand, has its top layer centered at 10 hPa ( 30 km). It is targeted on processes near the tropopause, and has more levels in this region. Despite some problems, both models generally reproduce the observed amplitudes and much of the observed lowlatitude patterns of the various modes of interannual variability in total ozone and lower stratospheric temperature. In most aspects MAECHAM4-CHEM performs slightly better than E39/C. MAECHAM4-CHEM overestimates the longterm decline of total ozone, whereas E39/C underestimates the decline over Antarctica and at northern mid-latitudes. The true long-term decline in winter and spring above the Correspondence to: W. Steinbrecht (wolfgang.steinbrecht@dwd.de) Arctic may be underestimated by a lack of TOMS/SBUV observations in winter, particularly in the cold 1990s. Main contributions to the observed interannual variations of total ozone and lower stratospheric temperature at 50 hPa come from a linear trend (up to −10 DU/decade at high northern latitudes, up to −40 DU/decade at high southern latitudes, and around −0.7 K/decade over much of the globe), from the intensity of the polar vortices (more than 40 DU, or 8 K peak to peak), the QBO (up to 20 DU, or 2 K peak to peak), and from tropospheric weather (up to 20 DU, or 2 K peak to peak). Smaller variations are related to the 11-year solar cycle (generally less than 15 DU, or 1 K), or to ENSO (up to 10 DU, or 1 K). These observed variations are replicated well in the simulations. Volcanic eruptions have resulted in sporadic changes (up to −30 DU, or +3 K). At low latitudes, patterns are zonally symmetric. At higher latitudes, however, strong, zonally non-symmetric signals are found close to the Aleutian Islands or south of Australia. Such asymmetric features appear in the model runs as well, but often at different longitudes than in the observations. The results point to a key role of the zonally asymmetric Aleutian (or Australian) stratospheric anti-cyclones for interannual variations at high-latitudes, and for coupling between polar vortex strength, QBO, 11-year solar cycle and ENSO.en
dc.language.isoEnglishen
dc.relation.ispartofAtmos. Chem. Phys.,en
dc.subjecttemperatureen
dc.subjectsimulationsen
dc.titleInterannual variation patterns of total ozone and lower stratospheric temperature in observations and model simulationsen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber349–374en
dc.subject.INGV01. Atmosphere::01.01. Atmosphere::01.01.02. Climateen
dc.relation.referencesAustin, J., Shindell, D., Beagley, S. R., Br¨uhl, C., Dameris, M., Manzini, E., Nagashima, T., Newman, P., Pawson, S., Pitari, G., Rozanov, E., Schnadt, C., and Shepherd, T. G.: Uncertainties and assessments of chemistry-climate models of the stratosphere, Atmos. Chem. Phys., 3, 1–27, 2003, SRef-ID: 1680-7324/acp/2003-3-1. Baldwin, M. P., Gray, L. J., Dunkerton, T. J., Hamilton, K., Haynes, P. H., Randel, W. J., Holton, J. R., Alexander, M. J., Hirota, I., Horinouchi, T., Jones, D. B. A., Kinnersley, J. S., Marquardt, C., and Takahashi, M.: The Quasi-Biennial Oscillation, Rev. Geophys., 39, 179–229, 2001. Baldwin, M. P. and Dunkerton, T. J.: Propagation of the Arctic Oscillation from the stratosphere to the troposphere, J. Geophys. Res., 104, 30 937–30 946, 1999. Callaghan, P. F. and Salby, M. L.: Three-Dimensionality and forcing of the Brewer-Dobson circulation, J. Atmos. Sci., 59, 976– 991, 2002. Dameris, M., Grewe, V., Ponater, M., Deckert, R., Eyring, V., Mager, F., Matthes, S., Schnadt, C., Stenke, A., Steil, B., Br¨uhl, C., and Giorgetta, M. A.: Long-term changes and variability in a transient simulation with a chemistry-climate model employing realistic forcing, Atmos. Chem. Phys., 5, 2121–2145, 2005, SRef-ID: 1680-7324/acp/2005-5-2121. Dobson, G. M. B., Harrison, D. N., and Lawrence, J.: Measurements of the amount of ozone in the earth’s atmosphere and its relation to other geophysical conditions, III, Proc. Roy. Soc. London A, 122, 456–486, 1929. Fioletev, V. E., Bodeker, G. E., Miller, A. J., McPeters, R. D., and Stolarski, R.: Global and zonal total ozone variations estimated from ground-based and satellite measurements: 1964–2000, J. Geophys. Res., 107, 4647, doi:10.1029/2001JD001350, 2002. Giorgetta, M. A. and Bengtsson, L.: The potential role of the quasibiennial oscillation in the stratosphere-troposphere exchange as found in water vapour in general circulation model experiments, J. Geophys. Res., 104, 6003–6019, 1999. Giorgetta, M. A., Manzini, E., and Roeckner, E.:, Forcing of the quasi-biennial oscillation from a broad spectrum of atmospheric waves, Geophys. Res. Lett., 29(D8), 1245, doi:10.1029/2002GL014756, 2002. Grewe, V., Brunner, D., Dameris, M., Grenfell, J. L., Hein, R., Shindell, D., and Staehelin, J.: Origin and variability of upper tropospheric nitrogen oxides and ozone at northern midlatitudes, Atmos. Environ., 35, 3421–3433, 2001. Grewe, V., Dameris, M., Fichter, C., and Sausen, R.: Impact of aircraft NOx emissions. Part 1: Interactively coupled climatechemistry simulations and sensitivities to climate-chemistry feedback, lightning and model resolution, Meteorol. Z., 3, 177– 186, 2002. Hein, R., Dameris, M., Schnadt, C., Land, C., Grewe, V., K¨ohler, I., Ponater, M., Sausen, R., Steil, B., Landgraf, J., and Br¨uhl, C.: Results of an interactively coupled atmospheric chemistry general circulation model: Comparison with observations, Ann. Geophys., 19, 435–457, 2001, SRef-ID: 1432-0576/ag/2001-19-435. Hood, L. L.: The solar cycle variation of total ozone: Dynamical forcing in the lower stratosphere, J. Geophys. Res., 102, 1355– 1370, 1997. Hurrell, J. W., and Trenberth, K. E.: Difficulties in Obtaining Reliable Temperature Trends: Reconciling the Surface and Satellite Microwave Sounding Unit Records, J. Clim., 11, 945–967, 1998. IPCC – Intergovernmental Panel on Climate Change: Climate Change 2001: The Scientific Basis, Contribution of Working Group I to the Third Assessment, Report of the Intergovernmental Panel on Climate Change (IPCC), edited by: Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., and Xiaosu, D., Cambridge University Press, Cambridge, UK, 944 pp., 2001. Kistler, R., Kalnay, E., Collins, W., Saha, S., White, G., Woollen, J., Chelliah, M., Ebisuzaki, W., Kanamitsu, M., Kousky, V., van den Dool, H., Jenne, R., and Fiorino, M.: The NCEP-NCAR 50-Year Reanalysis: Monthly Means, CD-ROM and Documentation, Bull. Am. Met. Soc., 82, 247–267, http://www.cpc.ncep. noaa.gov/products/wesley/reanalysis.html, 2001. Koch, G., Wernli, H., Staehelin, J., and Peter, T.: A Lagrangian analysis of stratospheric ozone variability and long-term trends above Payerne (Switzerland) during 1970–2001, J. Geophys. Res., 107, 4373, doi:10.1029/2001JD001550, 2002. Labitzke, K. and van Loon, H.: The stratosphere: phenomena, history, and relevance, Springer Verlag, Berlin, 197 pp., 1999. Labitzke, K., Austin, J., Butchart, N., Knight, J., Takahashi, M., Nakamoto, M., Nagashima, T., Haigh, J., and Williams, V.: The global signal of the 11-year solar cycle in the stratosphere: observations and models, J. Atmos. Solar-Terr. Phys., 64, 203–210, 2002. Lean, J. L., Rottman, G. J., Kyle, H. L.,Woods, T. N., Hickey, J. R., and Puga, L. C.: Detection and parameterization of variations in solar mid- and near-ultraviolet radiation (200–400 nm), J. Geophys. Res., 102, 29 939–29 956, 1997. Lee, H. and Smith, A. K.: Simulation of the combined effects of solar cycle, quasi-biennial oscillation, and volcanic forcing on stratospheric ozone changes in recent decades, J. Geophys. Res., 108(D2), 4049, doi:10.1029/2001JD001503, 2003. Manzini, E., McFarlane, N. A., and McLandress, C.: Impact of the Doppler Spread Parameterization on the simulation of the middle atmosphere circulation using the MA/ECHAM4 general circulation model, J. Geophys. Res., 102, 25 751–25 762, 1997. Manzini, E. and McFarlane, N. A.: The effect of varying the source spectrum of a gravity wave parameterization in a middle atmosphere general circulation model, J. Geophys. Res., 103, 31 523– 31 539, 1998. Manzini, E., Steil, B., Br¨uhl, C., Giorgetta, M. A., and Kr¨uger, K.: A new interactive chemistry climate model: 2. Sensitivity of the middle atmosphere to ozone depletion and increase in greenhouse gases and implications for recent stratospheric cooling, J. Geophys. Res., 108(D14), 4429, doi:10.1029/2002JD002977, 2003. Matthes, K., Langematz, U. , Gray, L. L., Kodera, K., and Labitzke, K.: Improved 11-year solar signal in the Freie Universitaet Berlin Climate Middle Atmosphere Model (FUB-CMAM), J. Geophys. Res., 109, D06101, doi:10.1029/2003JD004012, 2004. Newchurch, M. J., Yang, E.-S., Cunnold, D. M., Reinsel, G. C., Zawodny, J. M., and Russell III, J. M.: Evidence for slowdown in stratospheric ozone loss: First stage of ozone recovery, J. Geophys. Res., 108(D16), 4507, doi:10.1029/2003JD003471, 2003. Ramaswamy, V., Chanin, M. L., Angell, J., Barnett, J., Gaffen, D., Gelman, M., Keckhut, P., Koshelkov, Y., Labitzke, K., Lin, J. J. R., O’Neil, A., Nash, J., Randel, W., Rood, R., Shiotani, M., Swinbank, R., and Shine, K.: Stratospheric temperature trends: observations and model simulations, Rev. Geophys., 39, 71–122, 2001. See also http://www.atmosp.physics.utoronto.ca/SPARC/ News18/18 Ramaswamy.html. Rasch, P. J. and Lawrence, M. G.: Recent developments in transport methods at NCAR, in: Proceedings of the MPI workshop on conservative transport methods, Report No. 265, edited by: Machenhauer, B., 93 pp., Max Planck Institute for Meteorology, Hamburg, Germany, 1998. Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L. V., Rowell, D. P., Kent, E. C., and Kaplan, A.: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century, J. Geophys. Res., 108(D14), 4407, doi:10.1029/2002JD002670, 2003. Reinsel G. C., Miller, A. J., Weatherhead, E. C. , Flynn, L. E., Nagatani, R. M., Tiao, G. C., andWuebbles, D. J.: Trend analysis of total ozone data for turnaround and dynamical contributions, J. Geophys. Res., 110, D16306, doi:10.1029/2004JD004662, 2005. Rinsland, C. P., Mahieu, E., Zander, R., Jones, N. B., Chipperfield, M. P., Goldman, A., Anderson, J., Russell III, J. M., Demoulin, P., Notholt, J., Toon, G. C., Blavier, J.-F., Sen, B., Sussmann, R., Wood, S. W., Meier, A., Griffith, D. W. T., Chiou, L. S., Murcray, F. J., Stephen, T. M., Hase, F., Mikuteit, S., Schulz, A., and Blumenstock, T.: Long-term trends of inorganic chlorine from ground-based infrared solar spectra: Past increases and evidence for stabilization, J. Geophys. Res., 108(D8), 4252, doi:10.1029/2002JD003001, 2003. Robock, A.: Volcanic eruptions and climate, Rev. Geophys., 38, 191–219, 2000. Roeckner, E., Arpe, L., Bengtsson, L., Christoph, M., Claussen, M., D¨umenil, L., Esch, M., Giorgetta, M. A., Schlese, U., and Schulzweida, U.: The atmospheric general circulation model ECHAM-4: Model description and simulation of present-day climate, Rep. No. 218, MPI-Meteorologie, Hamburg, Germany, 90 pp., 1996. Ruzmaikin, A. and Feynman, J.: Solar influence on a major mode of atmospheric variability, J. Geophys. Res., 107(D14), doi:10.1029/2001JD001239, 2002. Salby, M. L. and Callaghan, P. F.: Fluctuations of total ozone and their relationship to stratospheric air motions, J. Geophys. Res., 98, 2715–2727, 1993. Salby, M. L. and Callaghan, P. F.: Interannual changes of the stratospheric circulation: relationship to ozone and tropospheric structure, J. Clim., 24, 3673–3685, 2002. Santer, B. D., Wigley, T. M. L., Sausen, R. , Meehl, G. A. , Taylor, K. E. , Ammann, C., Arblaster, J., Washington, W. M., Boyle, J. S., and Br¨uggemann, W.: Response to Comment on “Contributions of Anthropogenic and Natural Forcing to Recent Tropopause Height Changes”, Science, 303, 1771, 2004. Schnadt, C., Dameris, M., Ponater, M., Hein, R., Grewe, V., and Steil, B.: Interaction of atmospheric chemistry and climate and its impact on stratospheric ozone, Clim. Dyn., 18, 501–517, 2002. Schnadt, C. and Dameris, M.: Relationship between North Atlantic Oscillation changes and stratospheric ozone recovery in the Northern Hemisphere in a chemistry-climate model, Geophys. Res. Lett., 30(9), 1487, doi:10.1029/2003GL017006, 2003. Shine, K. P., Bourqui, M. S., Forster, P. M. F., Hare, S. H. E., Langematz, U., Braesicke, P., Grewe, V., Ponater, M., Schnadt, C., Smith, C. A., Haigh, J. D., Austin, J., Butchart, N., Shindell, D. T., Randel, W. J., Nagashima, T., Portmann, R. W., Solomon, S., Seidel, D. J., Lanzante, J., Klein, S., Ramaswamy, V., and Schwarzkopf, M. D.: A comparison of modelsimulated trends in stratospheric temperatures, Quart. J. R. Met. Soc., 129, 1565– 1588, 2003. Solomon, S., Portmann, R. W., Garcia, R. R., Thomason, L. W., Poole, L. R., and McCormick, M. P.: The role of aerosol variations in anthropogenic ozone depletion at northern midlatitudes, J. Geophys. Res., 101, 6713–6727, 1996. Solomon, S.: Stratospheric ozone depletion: A review of concepts and history, Rev. Geophys., 37, 275–316, 1999. Steil, B., Dameris, M., Br¨uhl, C., Crutzen, P. J., Grewe, V., Ponater, M., and Sausen, R.: Development of a chemistry module for GCMs: first results of a multiannual integration, Ann. Geophys., 16, 205–228, 1998, SRef-ID: 1432-0576/ag/1998-16-205. Steil, B., Br¨uhl, C., Manzini, E., Crutzen, P. J., Lelieveld, J., Rasch, P. J., Roeckner, E., and Kr¨uger, K.: A new interactive chemistry climate model: 1. Present day climatology and interannual variability of the middle atmosphere using the model and 9 years of HALOE/UARS data, J. Geophys. Res., 108(D9), 4290, doi:10.1029/2002JD002971, 2003. Steinbrecht, W., Claude, H., K¨ohler, U., and Hoinka, K. P.: Correlations between tropopause height and total ozone: Implications for long-term changes, J. Geophys. Res., 103, 19 183–19 192, 1998. Steinbrecht, W., Hassler, B., Claude, H., Winkler, P., and Stolarski, R. S.: Global distribution of total ozone and lower stratospheric temperature variations, Atmos. Chem. Phys., 3, 1421– 1438, 2003, SRef-ID: 1680-7324/acp/2003-3-1421. Steinbrecht, W., Claude, H., and Winkler, P.: Enhanced upper stratospheric ozone: Sign of recovery or solar cycle effect?, J. Geophys. Res., 109(D2), 2308, doi:10.1029/2003JD004284, 2004. Stenke, A. and Grewe, V.: Simulation of stratospheric water vapour trends: impact on stratospheric chemistry, Atmos. Chem. Phys., 5, 1257–1272, 2005, SRef-ID: 1680-7324/acp/2005-5-1257. Stolarski, R. S. and Hollandsworth-Frith, S.: Combined total ozone record from TOMS and SBUV instruments, http://code916.gsfc.nasa.gov/Data services/merged/data/ toms sbuv.v3.78-02.5x10.v7.txt, 2003. Timmreck, C., Graf, H.-F., and Steil, B.: Aerosol chemistry interactions after the Mt. Pinatubo eruption, in: Volcanism and the Earth’s Atmosphere, edited by: Robock, A. and Oppenheimer, C., Geophys. Monograph Series, 139, American Geophysical Union, Washington D.C., pp. 213–225, 2004. Thompson, D. W. J. and Wallace, J. M.: Annular modes in the extratropical circulation. Part I: Month-to-month variability, J. Climate, 13, 1000–1016, 2000. Tourpali, K., Schuurmans, C. J. E., van Dorland, R., Steil, B., and Br¨uhl, C.: Stratospheric and tropospheric response to enhanced solar UV-radiation: A model study, Geophys. Res. Lett., 30(5), 1231, doi:10.1029/2002GL016650, 2003. Tourpali, K., Schuurmans, C. J. E., van Dorland, R., Steil, B., Br¨uhl, C., andManzini, E.: Solar cycle modulation of the North Atlantic Oscillation in a Chemistry-Climate Model, Geophys. Res. Lett., 32(17), L17803, doi:10.1029/2005GL023509, 2005. Williamson, D. L. and Rasch, P. J.: Two-dimensional semi- Lagrangian transport with shape preserving interpolation, Mon. Wea. Rev., 117, 102–129, 1989. WMO(World Meteorological Organization): Scientific Assessment of Ozone Depletion: 2002, Global Ozone Research and Monitoring ProjectReport No. 47, 498 pp., Geneva, http://www.wmo.ch/ web/arep/ozone.html, 2003. Yang, H. and Tung, K. K.: On the phase propagation of extra tropical Quasi-Biennial Oscillation in observational data, J. Geophys. Res., 100, 9091–9100, 1995. Zerefos, C. S., Tourpali, K., Bojkov, B. R., Balis, D. S., Rognerund, B., and Isaksen, I. S. A.: Solar activity-total column ozone relationships: Observations and model studies with heterogeneous chemistry, J. Geophys. Res., 102, 1561–1569, 1997.en
dc.description.fulltextopenen
dc.contributor.authorSteinbrecht, W.en
dc.contributor.authorHaßler, B.en
dc.contributor.authorBruhl, C.en
dc.contributor.authorDameris, C.en
dc.contributor.authorGiorgetta, M.en
dc.contributor.authorGrewe, V.en
dc.contributor.authorManzini, E.en
dc.contributor.authorMatthes, S.en
dc.contributor.authorSchnadt, C.en
dc.contributor.authorSteil, B.en
dc.contributor.authorWinkler, P.en
dc.contributor.departmentMeteorologisches Observatorium Hohenpeißenberg, Deutscher Wetterdienst, Hohenpeißenberg, Germanyen
dc.contributor.departmentMeteorologisches Observatorium Hohenpeißenberg, Deutscher Wetterdienst, Hohenpeißenberg, Germanyen
dc.contributor.departmentChemie der Atmosph¨are, Max Planck Institut f¨ur Chemie, Mainz, Germanyen
dc.contributor.departmentInstitut f¨ur Physik der Atmosph¨are, Deutsches Zentrum f¨ur Luft und Raumfahrt, Oberpfaffenhofen, Germanyen
dc.contributor.departmentAtmosph¨are im Erdsystem, Max Planck Institut f¨ur Meteorologie, Hamburg, Germanyen
dc.contributor.departmentInstitut f¨ur Physik der Atmosph¨are, Deutsches Zentrum f¨ur Luft und Raumfahrt, Oberpfaffenhofen, Germanyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.departmentAtmosph¨are im Erdsystem, Max Planck Institut f¨ur Meteorologie, Hamburg, Germanyen
dc.contributor.departmentInstitut f¨ur Physik der Atmosph¨are, Deutsches Zentrum f¨ur Luft und Raumfahrt, Oberpfaffenhofen, Germanyen
dc.contributor.departmentChemie der Atmosph¨are, Max Planck Institut f¨ur Chemie, Mainz, Germanyen
dc.contributor.departmentMeteorologisches Observatorium Hohenpeißenberg, Deutscher Wetterdienst, Hohenpeißenberg, Germanyen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptDWD, Hienpeissenberg, Germany-
crisitem.author.deptMeteorologisches Observatorium Hohenpeißenberg, Deutscher Wetterdienst, Hohenpeißenberg, Germany-
crisitem.author.deptMax-Planck-Institute for Chemistry, Mainz, Germany.-
crisitem.author.deptInstitut f¨ur Physik der Atmosph¨are, Deutsches Zentrum f¨ur Luft und Raumfahrt, Oberpfaffenhofen, Germany-
crisitem.author.deptMax Planck Institute for Meteorology, Hamburg, Germany-
crisitem.author.deptInstitut fu¨ r Physik der Atmospha¨re, Deutsches Zentrum fu¨ r Luft- und Raumfahrt, Oberpfaffenhofen, Wessling, Germany-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptAtmosph¨are im Erdsystem, Max Planck Institut f¨ur Meteorologie, Hamburg, Germany-
crisitem.author.deptInstitut f¨ur Physik der Atmosph¨are, Deutsches Zentrum f¨ur Luft und Raumfahrt, Oberpfaffenhofen, Germany-
crisitem.author.deptChemie der Atmosph¨are, Max Planck Institut f¨ur Chemie, Mainz, Germany-
crisitem.author.deptMeteorologisches Observatorium Hohenpeißenberg, Deutscher Wetterdienst, Hohenpeißenberg, Germany-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent01. Atmosphere-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
1451.pdf3.37 MBAdobe PDFView/Open
Show simple item record

Page view(s)

141
checked on Apr 17, 2024

Download(s) 50

118
checked on Apr 17, 2024

Google ScholarTM

Check