Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/2649
DC FieldValueLanguage
dc.contributor.authorallSteinbrecht, W.; German Weather Service, Hohenpeissenberg, Germany.en
dc.contributor.authorallClaude, H.; German Weather Service, Hohenpeissenberg, Germany.en
dc.contributor.authorallSchönenborn, F.; German Weather Service, Hohenpeissenberg, Germany.en
dc.contributor.authorallMcDermid, I.; Table Mountain Facility, NASA-JPL, Wrightwood, California, USA.en
dc.contributor.authorallLeblanc, T.; Table Mountain Facility, NASA-JPL, Wrightwood, California, USA.en
dc.contributor.authorallGodin, S.; CNRS Service d’Aeronomie, Paris, France.en
dc.contributor.authorallSong, T.; CNRS Service d’Aeronomie, Paris, France.en
dc.contributor.authorallSwart, D.; RIVM, Bilthoven, Netherlands.en
dc.contributor.authorallMeijer, Y.; RIVM, Bilthoven, Netherlands.en
dc.contributor.authorallBodeker, G.; NIWA, Omakau, Central Otago, New Zealand.en
dc.contributor.authorallConnor, B.; NIWA, Omakau, Central Otago, New Zealand.en
dc.contributor.authorallKämpfer, N.; Institute of Applied Physics, University of Bern, Bern, Switzerland.en
dc.contributor.authorallHocke, K.; Institute of Applied Physics, University of Bern, Bern, Switzerland.en
dc.contributor.authorallCalisesi, Y.; Institute of Applied Physics, University of Bern, Bern, Switzerland.en
dc.contributor.authorallSchneider, N.; OASU/L3AB, Universite´ Bordeaux 1, CNRS-INSU, Floirac, France.en
dc.contributor.authorallde la Nöe, J.; OASU/L3AB, Universite´ Bordeaux 1, CNRS-INSU, Floirac, France.en
dc.contributor.authorallParrish, A.; Astronomy Department, University of Massachusetts, Amherst,en
dc.contributor.authorallBoyd, I.; NIWA-ERI, Ann Arbor, Michigan, USA.en
dc.contributor.authorallBrühl, C.; Max-Planck-Institute for Chemistry, Mainz, Germany.en
dc.contributor.authorallSteil, B.; Max-Planck-Institute for Chemistry, Mainz, Germany.en
dc.contributor.authorallGiorgetta, M.; Max-Planck-Institute for Meteorology, Hamburg, Germany.en
dc.contributor.authorallManzini, E.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.authorallThomason, L.; NASA LARC, Hampton, Virginia, USA.en
dc.contributor.authorallZawodny, J.; NASA LARC, Hampton, Virginia, USA.en
dc.contributor.authorallMcCormick, M.; Hampton University, Hampton, Virginia, USA.en
dc.contributor.authorallRussell, J.; Hampton University, Hampton, Virginia, USA.en
dc.contributor.authorallBharti, P.; NASA GSFC, Greenbelt, Maryland, USA.en
dc.contributor.authorallStolarski, R.; NASA GSFC, Greenbelt, Maryland, USA.en
dc.contributor.authorallHollandsworth-Frith, S.; NASA GSFC, Greenbelt, Maryland, USA.en
dc.date.accessioned2007-10-15T06:42:26Zen
dc.date.available2007-10-15T06:42:26Zen
dc.date.issued2006en
dc.identifier.urihttp://hdl.handle.net/2122/2649en
dc.description.abstractThe long-term evolution of upper stratospheric ozone has been recorded by lidars and microwave radiometers within the ground-based Network for the Detection of Stratospheric Change (NDSC), and by the space-borne Solar Backscatter Ultra-Violet instruments (SBUV), Stratospheric Aerosol and Gas Experiment (SAGE), and Halogen Occultation Experiment (HALOE). Climatological mean differences between these instruments are typically smaller than 5% between 25 and 50 km. Ozone anomaly time series from all instruments, averaged from 35 to 45 km altitude, track each other very well and typically agree within 3 to 5%. SBUV seems to have a slight positive drift against the other instruments. The corresponding 1979 to 1999 period from a transient simulation by the fully coupled MAECHAM4-CHEM chemistry climate model reproduces many features of the observed anomalies. However, in the upper stratosphere the model shows too low ozone values and too negative ozone trends, probably due to an underestimation of methane and a consequent overestimation of ClO. The combination of all observational data sets provides a very consistent picture, with a long-term stability of 2% or better. Upper stratospheric ozone shows three main features: (1) a decline by 10 to 15% since 1980, due to chemical destruction by chlorine; (2) two to three year fluctuations by 5 to 10%, due to the Quasi-Biennial Oscillation (QBO); (3) an 11-year oscillation by about 5%, due to the 11-year solar cycle. The 1979 to 1997 ozone trends are larger at the southern mid-latitude station Lauder (45 S), reaching 8%/decade, compared to only about 6%/decade at Table Mountain (35 N), Haute Provence/Bordeaux ( 45 N), and Hohenpeissenberg/Bern( 47 N). At Lauder, Hawaii (20 N), Table Mountain, and Haute Provence, ozone residuals after subtraction of QBO- and solar cycle effects have levelled off in recent years, or are even increasing. Assuming a turning point in January 1997, the change of trend is largest at southern mid-latitude Lauder, +11%/decade, compared to +7%/decade at northern mid-latitudes. This points to a beginning recovery of upper stratospheric ozone. However, chlorine levels are still very high and ozone will remain vulnerable. At this point the most northerly mid-latitude station, Hohenpeissenberg/Bern differs from the other stations, and shows much less clear evidence for a beginning recovery, with a change of trend in 1997 by only +3%/decade. In fact, record low upper stratospheric ozone values were observed at Hohenpeissenberg/Bern, and to a lesser degree at Table Mountain and Haute Provence, in the winters 2003/2004 and 2004/2005.en
dc.language.isoEnglishen
dc.relation.ispartofJOURNAL OF GEOPHYSICAL RESEARCH,en
dc.subjectstratosphericen
dc.subjectNetworken
dc.titleLong-term evolution of upper stratospheric ozone at selected stations of the Network for the Detection of Stratospheric Change (NDSC)en
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberD10308en
dc.subject.INGV01. Atmosphere::01.01. Atmosphere::01.01.02. Climateen
dc.identifier.doidoi:10.1029/2005JD006454en
dc.relation.referencesAnderson, J., J. M. Russell III, S. Solomon, and L. E. Deaver (2000), HALOE confirmation of stratospheric chlorine decreases in accordance with the Montreal Protocol, J. Geophys. Res., 105, 4483– 4490. Austin, J., et al. (2003), Uncertainties and assessments of chemistry-climate models of the stratosphere, Atmos. Chem. Phys., 3, 1– 27. Bhartia, P. K., R. D. McPeters, C. L. Mateer, L. E. Flynn, and C.Wellemeyer (1996), Algorithm for the estimation of vertical ozone profile from the backscattered ultraviolet (BUV) technique, J. Geophys. Res., 101, 18,793– 18,806. Brasseur, G., and S. Solomon (1984), Aeronomy of the Middle Atmosphere, 441 pp., Springer, New York. Brinksma, E. J., J. Ajtic, J. B. Bergwerff, G. E. Bodeker, I. S. Boyd, J. F. de Haan, W. Hogervorst, J. W. Hovenier, and D. P. J. Swart (2002), Five years of observations of ozone profiles over Lauder, New Zealand, J. Geophys. Res., 107(D14), 4216, doi:10.1029/2001JD000737. Calisesi, Y., H. Wernli, and N. Ka¨mpfer (2001), Midstratospheric ozone variability over Bern related to planetary wave activity during the winters 1994– 1995 to 1998–1999, J. Geophys. Res., 106, 7903–7916. Claude, H., F. Scho¨nenborn, W. Steinbrecht, and W. Vandersee (1994), New evidence for ozone depletion in the upper stratosphere, Geophys. Res. Lett., 21, 2409–2412. Connor, B. J., A. Parrish, J. J. Tsou, and M. P. McCormick (1995), Error analysis for the ground-based microwave ozone measurements during STOIC, J. Geophys. Res., 100, 9283– 9291. Considine, D. B., A. E. Dessler, C. H. Jackman, J. E. Rosenfield, P. E. Meade, M. R. Schoeberl, A. E. Roche, and J. W. Waters (1998), Interhemispheric asymmetry in the 1 mbar O3 trend: An analysis using an interactive zonal mean model and UARS data, J. Geophys. Res., 103, 1607– 1618. Crutzen, P. J. (1974), Estimates of possible future ozone reductions from continued use of fluoro-chloro-methanes CF2Cl2, CFCl3, Geophys. Res. Lett., 1, 205–208. Cunnold, D. M., E.-S.Yang, M. J. Newchurch, G. C. Reinsel, J. M. Zawodny, and J. M. Russell III (2004), Comment on ‘‘Enhanced upper stratospheric ozone: Sign of recovery or solar cycle effect?’’ by W. Steinbrecht et al., J. Geophys. Res., 109, D14305, doi:10.1029/2004JD004826. DeBacker, H., E. P. Visser, D. DeMuer, and D. P. J. Swart (1994), Potential for meteorological bias in lidar ozone data sets resulting from the restricted frequency of measurement due to cloud cover, J. Geophys. Res., 99, 1395– 1401. Douglass, A. E., R. B. Rood, and R. S. Stolarski (1985), Interpretation of Ozone Temperature Correlations: 2. Analysis of SBUV Ozone Data, J. Geophys. Res., 90, 10,693– 10,708. Engel, A., M. Strunk, M. Mu¨ ller, H.-P. Haase, C. Poss, I. Levin, and U. Schmidt (2002), The temporal development of total chlorine in the high latitude stratosphere based on reference distributions of mean age derived from CO2 and SF6, J. Geophys. Res., 107(D12), 4136, doi:10.1029/2001JD000584. Frith, S., R. S. Stolarski, and P. K. Bhartia (2004), Implications of version 8 TOMS and SBUV data for long-term trend analysis, in Proceedings of XX Quadrennial Ozone Symposium, June 2004, Kos, Greece, edited by C. S. Zerefos, pp. 65– 66, Univ. of Athens, Athens, Greece. Giorgetta, M. A., and L. Bengtsson (1999), The potential role of the quasibiennial oscillation in the stratosphere-troposphere exchange as found in water vapour in general circulation model experiments, J. Geophys. Res., 104, 6003– 6019. Godin, S., et al. (1999), Differential Absorption Ozone Lidar Algorithm Intercomparison, Appl. Opt., 38, 6225–6236. Godin-Beekmann, S., J. Porteneuve, and A. Garnier (2003), Systematic DIAL lidar monitoring of the stratospheric ozone vertical distribution at Observatoire de Haute-Provence (43.92 N, 5.71 E), J. Environ. Monit., 5, 57–67, doi:10.1039/b205880d. Guirlet, M., P. Keckhut, S. Godin, and G. Me´gie (2000), Description of the long-term ozone data series obtained from different instrumental techniques at a single location: The Observatoire de Haute-Provence (43.9 N, 5.7 E), Ann. Geophys., 18, 1325– 1339. Heath, D. F., A. J. Krueger, H. A. Roeder, and B. D. Henderson (1975), The Solar Backscatter Ultraviolet and Total Ozone Mapping Spectrometer (SBUV/TOMS) for Nimbus 6, Opt. Eng., 14, 323– 331. Hilsenrath, E., R. P. Cebula, M. T. Deland, K. Laamann, S. Taylor, C. Wellemeyer, and P. K. Bhartia (1995), Calibration of the NOAA-11 Solar Backscatter Ultraviolet (SBUV/2) Ozone Data Set from 1989 to 1993 using In-Flight Calibration Data and SSBUV, J. Geophys. Res., 100, 1351–1366. Hood, L. L., J. L. Jirikowic, and J. P. McCormack (1993), Quasi-decadal variability of the stratosphere: Influence of long-term solar ultraviolet variations, J. Atmos. Sci., 50, 3941–3958. Huang, F. T., C. A. Reber, and J. Austin (1997), Ozone diurnal variations observed by UARS and their model simulation, J. Geophys. Res., 102, 12,971–12,986. Jackman, C. H., E. L. Fleming, F. M. Vitt, and D. B. Considine (1999), The influence of solar proton events on the ozone layer, Adv. Space Res., 24, 625–630. Ka¨mpfer, N. (1995), Microwave remote sensing of the atmosphere in Switzerland, Opt. Eng., 34, 2413–2424. Keckhut, P., et al. (2004), Review of ozone and temperature lidar validations performed within the framework of the Network for the Detection of Stratospheric Change, J. Environ. Monit., 6, 721 – 733, doi:10.1039/ b404256e. Leblanc, T., and I. S. McDermid (2000), Stratospheric ozone climatology from lidar measurements at Table Mountain (34.4 N, 117.7 W) and Mauna Loa (19.5 N, 155.6 W), J. Geophys. Res., 105, 14,613– 14,624. Leblanc, T., and I. S. McDermid (2001), Quasi-biennial oscillation signatures in ozone and temperature observed by lidar at Mauna Loa, Hawaii (19.5 N, 155.6 W), J. Geophys. Res., 106, 14,869– 14,874. Lee, H., and A. K. Smith (2003), Simulation of the combined effects of solar cycle, quasi-biennial oscillation, and volcanic forcing on stratospheric ozone changes in recent decades, J. Geophys. Res., 108(D2), 4049, doi:10.1029/2001JD001503. Li, J., D. M. Cunnold, H.-J.Wang, E.-S. Yang, and M. J. Newchurch (2002), A discussion of upper stratospheric ozone asymmetries and SAGE trends, J. Geophys. Res., 107(D23), 4705, doi:10.1029/2001JD001398. Manzini, E., and N. A. McFarlane (1998), The effect of varying the source spectrum of a gravity wave parameterization in a middle atmosphere general circulation model, J. Geophys. Res., 103, 31,523–31,539. Manzini, E., B. Steil, C. Bru¨hl, M. A. Giorgetta, and K. Krger (2003), A new interactive chemistry-climate model: 2. Sensitivity of the middle atmosphere to ozone depletion and increase in greenhouse gases: Implications for recent stratospheric cooling, J. Geophys. Res., 108(D14), 4429, doi:10.1029/2002JD002977. McCormick, M. P., J. M. Zawodny, R. E. Veiga, J. C. Larsen, and P. H. Wang (1989), An Overview Of SAGE I And II Ozone Measurements, Planet. Space Sci., 37, 1567– 1586. McDermid, I. S., S. M. Godin, and L. O. Lindqvist (1990), Ground-based laser DIAL system for long-term measurements of stratospheric ozone, Appl. Opt., 29, 3603– 3612. McDermid, I. S., et al. (1998), OPAL: Network for the detection of stratospheric change ozone profiler assessment at Lauder, New Zealand: 2. Intercomparison of revised results, J. Geophys. Res., 103, 28,693– 28,700. McPeters, R. D., et al. (1999), Results from the 1995 stratospheric ozone profile intercomparison at Mauna Loa, J. Geophys. Res., 104, 30,505– 30,514. Meijer, Y. J., R. J. van der A, R. F. van Oss, D. P. J. Swart, H.M. Kelder, and P. V. Johnston (2003), Global Ozone Monitoring Experiment ozone profile characterization using interpretation tools and lidar measurements for intercomparison, J. Geophys. Res., 108(D23), 4723, doi:10.1029/ 2003JD003498. Molina, M. J., and F. S. Rowland (1974), Stratospheric sink for chlorofluoromethanes - chlorine atom catalyzed destruction of ozone, Nature, 249, 810–812. Morris, G. A., J. F. Gleason, J. M. Russell III, M. R. Schoeberl, and M. P. McCormick (2002), A comparison of HALOE V19 with SAGE II V6.00 ozone observations using trajectory mapping, J. Geophys. Res., 107(D13), 4177, doi:10.1029/2001JD000847. Nazaryan, H., and M. P. McCormick (2005), Comparisons of Stratospheric Aerosol and Gas Experiment (SAGE II) and Solar Backscatter Ultraviolet Instrument (SBUV/2) ozone profiles and trend estimates, J. Geophys. Res., 110, D17302, doi:10.1029/2004JD005483. Nazaryan, H., M. P. McCormick, and J. M. Russell III (2005), New studies of SAGE II and HALOE ozone profile and long-term change comparisons, J. Geophys. Res., 110, D09305, doi:10.1029/2004JD005425. Newchurch, M. J., E.-S.Yang, D. M. Cunnold, G. C. Reinsel, J. M. Zawodny, and J. M. Russell III (2003), Evidence for slowdown in stratospheric ozone loss: First stage of ozone recovery, J. Geophys. Res., 108(D16), 4507, doi:10.1029/2003JD003471. Parrish, A., B. J. Connor, J. J. Tsou, I. S. McDermid, and W. P. Chu (1992), Ground-based microwave monitoring of stratospheric ozone, J. Geophys. Res., 97, 2541–2546. Pelon, J., and G. Me´gie (1982), Ozone monitoring in the troposphere and lower stratosphere: Evaluation and operation of a ground-based lidar station, J. Geophys. Res., 87, 4947– 4955. Petropavlovskikh, I., C. Ahn, P. K. Bhartia, and L. E. Flynn (2005), Comparison and covalidation of ozone anomalies and variability observed in SBUV(/2) and Umkehr northern midlatitude ozone profile estimates, Geophys. Res. Lett., 32, L06805, doi:10.1029/2004GL022002. Ramaswamy, V., et al. (2001), Stratospheric temperature trends: Observations and model simulations, Rev. Geophys., 39, 71– 122. Randeniya, L. K., P. F. Vohralik, and I. C. Plumb (2002), Stratospheric ozone depletion at northern mid latitudes in the 21 st century: The importance of future concentrations of greenhouse gases nitrous oxide and methane, Geophys. Res. Lett., 29(4), 1051, doi:10.1029/2001GL014295. Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan (2003), Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century, J. Geophys. Res., 108(D14), 4407, doi:10.1029/ 2002JD002670. Reinsel, G. C., E. C. Weatherhead, G. C. Tiao, A. J. Miller, R. M. Nagatani, D. J. Wuebbles, and L. E. Flynn (2002), On detection of turnaround and recovery in trend for ozone, J. Geophys. Res., 107(D10), 4078, doi:10.1029/2001JD000500. Reinsel, G. C., A. J. Miller, E. C.Weatherhead, L. E. Flynn, R. M. Nagatani, G. C. Tiao, and D. J. Wuebbles (2005), Trend analysis of total ozone data for turnaround and dynamical contributions, J. Geophys. Res., 110, D16306, doi:10.1029/2004JD004662. Rinsland, C. P., et al. (2003), Long-term trends of inorganic chlorine from ground-based infrared solar spectra: Past increases and evidence for stabilization, J. Geophys. Res., 108(D8), 4252, doi:10.1029/2002JD003001. Rosenfield, J. E., A. R. Douglass, and D. B. Considine (2002), The impact of increasing carbon dioxide on ozone recovery, J. Geophys. Res., 107(D6), 4049, doi:10.1029/2001JD000824. Rosenfield, J. E., S. M. Frith, and R. S. Stolarski (2005), Version 8 SBUV ozone profile trends compared with trends from a zonally averaged chemical model, J. Geophys. Res., 110, D12302, doi:10.1029/ 2004JD005466. Russell, J. M., III, L. L. Gordley, J. H. Park, S. R. Drayson, W. D. Hesketh, R. J. Cicerone, A. F. Tuck, J. E. Frederick, J. E. Harris, and P. J. Crutzen (1993), The Halogen Occultation Experiment, J. Geophys. Res., 98, 10,777– 10,798. Salby, M., P. Callaghan, P. Keckhut, S. Godin, and M. Guirlet (2002), Interannual changes of temperature and ozone: Relationship between the lower and upper stratosphere, J. Geophys. Res., 107(D18), 4342, doi:10.1029/2001JD000421. Schneider, N., O. Lezeaux, J. de La Noe¨, J. Urban, and P. Ricaud (2003), Validation of ground-based observations of stratomesospheric ozone, J. Geophys. Res., 108(D17), 4540, doi:10.1029/2002JD002925. Schneider, N., F. Selsis, J. Urban, O. Lezeaux, J. La Noe¨, and P. Ricaud (2005), Seasonal and diurnal ozone variations: Observations and modeling, J. Atmos. Chem., 50, 25– 47, doi:10.1007/s10874-005-1172-z. SPARC (1998), Assessment of trends in the vertical distribution of ozone, edited by N. Harris, R. Hudson, and C. Phillips, SPARC Rep. 1, World Clim. Res. Programme, Geneva. (Available at http://www.atmosp.physics. utoronto.ca/SPARC/SPARCReport1) Steil, B., C. Bru¨hl, E. Manzini, P. J. Crutzen, J. Lelieveld, P. J. Rasch, E. Roeckner, and K. Kru¨ger (2003), A new interactive chemistry climate model: 1. Present day climatology and interannual variability of the middle atmosphere using the model and 9 years of HALOE/UARS data, J. Geophys. Res., 108(D9), 4290, doi:10.1029/2002JD002971. Steinbrecht, W., P. Winkler, and H. Claude (1997), Ozon- und Temperaturmessungen mittels Lidar am Hohenpeissenberg, Rep. 200, Deutscher Wetterdienst, Offenbach, Germany. (Available at http://www.dwd.de/de/ FundE/Observator/MOHP/hp2/ozon/pubs_as_pdf/dwd_200.pdf) Steinbrecht, W., H. Claude, U. Ko¨hler, and K. P. Hoinka (1998), Correlations between tropopause height and total ozone: Implications for longterm changes, J. Geophys. Res., 103, 19,183– 19,192. Steinbrecht, W., H. Claude, and P. Winkler (2004), Enhanced upper stratospheric ozone: Sign of recovery or solar cycle effect?, J. Geophys. Res., 109, D02308, doi:10.1029/2003JD004284. Timmreck, C., H.-F. Graf, and B. Steil (2004), Aerosol chemistry interactions after the Mt. Pinatubo eruption, in Volcanism and the Earth’s Atmosphere, Geophys. Monogr. Ser., vol. 139, edited by A. Robock and C. Oppenheimer, pp. 213– 225, AGU, Washington, D. C. Tourpali, K., C. J. E. Schuurmans, R. van Dorland, B. Steil, and C. Bru¨hl (2003), Stratospheric and tropospheric response to enhanced solar UVradiation: A model study, Geophys. Res. Lett., 30(5), 1231, doi:10.1029/ 2002GL016650. Tsou, J. J., B. J. Connor, A. Parrish, R. B. Pierce, I. S. Boyd, G. E. Bodeker, W. P. Chu, J. M. Russell III, D. P. J. Swart, and T. J. McGee (2000), NDSC millimeter wave ozone observations at Lauder, New Zealand, 1992 – 1998: Improved methodology, validation, and variation study, J. Geophys. Res., 105, 24,263–24,281. Tung, K. K., and H. Yang (1994a), Global QBO in circulation and ozone. Part I: Reexamination of observational evidence, J. Atmos. Sci., 51, 2699–2707. Tung, K. K., and H. Yang (1994b), Global QBO in circulation and ozone. Part II: A simple mechanistic model, J. Atmos. Sci., 51, 2708–2721. Wang, H. J., D. M. Cunnold, and X. Bao (1996), A critical analysis of SAGE ozone trends, J. Geophys. Res., 101, 12,495–12,514. Wang, H. J., D. M. Cunnold, L. W. Thomason, J. M. Zawodny, and G. E. Bodeker (2002), Assessment of SAGE version 6.1 ozone data quality, J. Geophys. Res., 107(D23), 4691, doi:10.1029/2002JD002418. Waugh, D. W., and T. M. Hall (2002), Age of stratospheric air: Theory, observations, and models, Rev. Geophys., 40(4), 1010, doi:10.1029/ 2000RG000101. Werner, J., K. W. Rothe, and H. Walther (1983), Monitoring of the stratospheric ozone layer by laser radar, Appl. Phys. B, 32, 113–118. World Meteorological Organization (WMO) (1999), Scientific assessment of ozone depletion: 1998, Rep. 44, Geneva, Switzerland. World Meteorological Organization (WMO) (2003), Scientific assessment of ozone depletion: 2002, Rep. 47, Geneva, Switzerland. Zawodny, J. M., and M. P. McCormick (1991), Stratospheric Aerosol and Gas Experiment II measurements of the quasi-biennial oscillation in ozone and nitrogen dioxide, J. Geophys. Res., 96, 9371– 9377. P. K. Bhartia, S. M. Hollandsworth-Frith, and R. S. Stolarski, NASA GSFC, Greenbelt, MD 20771, USA. G. E. Bodeker and B. J. Connor, NIWA, Omakau, Central Otago, New Zealand. I. S. Boyd, NIWA-ERI, Ann Arbor, MI 48108, USA. C. Bru¨hl and B. Steil, Max-Planck-Institute for Chemistry, D-55028 Mainz, Germany. Y. Calisesi, International Space Science Institute, CH-3012 Bern, Switzerland. H. Claude, F. Scho¨nenborn, and W. Steinbrecht, Meteorological Observatory Hohenpeissenberg, German Weather Service, Albin Schwaiger Weg 10, D-82383 Hohenpeissenberg, Germany. (hans.claude@dwd.de; wolfgang.steinbrecht@dwd.de) J. de la Noe¨ and N. Schneider, OASU/L3AB, Universite´ Bordeaux 1, CNRS-INSU, F-33270 Floirac, France. M. A. Giorgetta, Max-Planck-Institute for Meteorology, D-20146 Hamburg, Germany. S. Godin and T. Song, CNRS Service d’Aeronomie, F-75004 Paris, France. K. Hocke and N. Ka¨mpfer, Institute of Applied Physics, University of Bern, CH-3012 Bern, Switzerland. T. Leblanc and I. S. McDermid, Table Mountain Facility, NASA-JPL, Wrightwood, CA 92397, USA. E. Manzini, Istituto Nazionale di Geofisica e Vulcanologia, I-40128 Bologna, Italy. M. P. McCormick and J. M. Russell III, Hampton University, Hampton, VA 23668, USA. Y. J. Meijer and D. P. J. Swart, RIVM, NL-3720 Bilthoven, Netherlands. A. D. Parrish, Astronomy Department, University of Massachusetts, Amherst, MA 01003, USA. L. W. Thomason and J. M. Zawodny, NASA LARC, Hampton, VA 23681, USA.en
dc.description.fulltextopenen
dc.contributor.authorSteinbrecht, W.en
dc.contributor.authorClaude, H.en
dc.contributor.authorSchönenborn, F.en
dc.contributor.authorMcDermid, I.en
dc.contributor.authorLeblanc, T.en
dc.contributor.authorGodin, S.en
dc.contributor.authorSong, T.en
dc.contributor.authorSwart, D.en
dc.contributor.authorMeijer, Y.en
dc.contributor.authorBodeker, G.en
dc.contributor.authorConnor, B.en
dc.contributor.authorKämpfer, N.en
dc.contributor.authorHocke, K.en
dc.contributor.authorCalisesi, Y.en
dc.contributor.authorSchneider, N.en
dc.contributor.authorde la Nöe, J.en
dc.contributor.authorParrish, A.en
dc.contributor.authorBoyd, I.en
dc.contributor.authorBrühl, C.en
dc.contributor.authorSteil, B.en
dc.contributor.authorGiorgetta, M.en
dc.contributor.authorManzini, E.en
dc.contributor.authorThomason, L.en
dc.contributor.authorZawodny, J.en
dc.contributor.authorMcCormick, M.en
dc.contributor.authorRussell, J.en
dc.contributor.authorBharti, P.en
dc.contributor.authorStolarski, R.en
dc.contributor.authorHollandsworth-Frith, S.en
dc.contributor.departmentGerman Weather Service, Hohenpeissenberg, Germany.en
dc.contributor.departmentGerman Weather Service, Hohenpeissenberg, Germany.en
dc.contributor.departmentGerman Weather Service, Hohenpeissenberg, Germany.en
dc.contributor.departmentTable Mountain Facility, NASA-JPL, Wrightwood, California, USA.en
dc.contributor.departmentTable Mountain Facility, NASA-JPL, Wrightwood, California, USA.en
dc.contributor.departmentCNRS Service d’Aeronomie, Paris, France.en
dc.contributor.departmentCNRS Service d’Aeronomie, Paris, France.en
dc.contributor.departmentRIVM, Bilthoven, Netherlands.en
dc.contributor.departmentRIVM, Bilthoven, Netherlands.en
dc.contributor.departmentNIWA, Omakau, Central Otago, New Zealand.en
dc.contributor.departmentNIWA, Omakau, Central Otago, New Zealand.en
dc.contributor.departmentInstitute of Applied Physics, University of Bern, Bern, Switzerland.en
dc.contributor.departmentInstitute of Applied Physics, University of Bern, Bern, Switzerland.en
dc.contributor.departmentInstitute of Applied Physics, University of Bern, Bern, Switzerland.en
dc.contributor.departmentOASU/L3AB, Universite´ Bordeaux 1, CNRS-INSU, Floirac, France.en
dc.contributor.departmentOASU/L3AB, Universite´ Bordeaux 1, CNRS-INSU, Floirac, France.en
dc.contributor.departmentAstronomy Department, University of Massachusetts, Amherst,en
dc.contributor.departmentNIWA-ERI, Ann Arbor, Michigan, USA.en
dc.contributor.departmentMax-Planck-Institute for Chemistry, Mainz, Germany.en
dc.contributor.departmentMax-Planck-Institute for Chemistry, Mainz, Germany.en
dc.contributor.departmentMax-Planck-Institute for Meteorology, Hamburg, Germany.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.departmentNASA LARC, Hampton, Virginia, USA.en
dc.contributor.departmentNASA LARC, Hampton, Virginia, USA.en
dc.contributor.departmentHampton University, Hampton, Virginia, USA.en
dc.contributor.departmentHampton University, Hampton, Virginia, USA.en
dc.contributor.departmentNASA GSFC, Greenbelt, Maryland, USA.en
dc.contributor.departmentNASA GSFC, Greenbelt, Maryland, USA.en
dc.contributor.departmentNASA GSFC, Greenbelt, Maryland, USA.en
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptDWD, Hienpeissenberg, Germany-
crisitem.author.deptGerman Weather Service, Hohenpeissenberg, Germany.-
crisitem.author.deptGerman Weather Service, Hohenpeissenberg, Germany.-
crisitem.author.deptDWD, Hienpeissenberg, Germany-
crisitem.author.deptIFU, Garmish-Partenkirchen, Germany-
crisitem.author.deptING, Italy-
crisitem.author.deptDipartimento di Fisica, Università di L'Aquila, Italy-
crisitem.author.deptTable Mountain Facility, NASA-JPL, Wrightwood, California, USA.-
crisitem.author.deptCNRS Service d’Aeronomie, Paris, France.-
crisitem.author.deptCNRS Service d’Aeronomie, Paris, France.-
crisitem.author.deptRIVM, Bilthoven, Netherlands.-
crisitem.author.deptRIVM, Bilthoven, Netherlands.-
crisitem.author.deptNational Institute of Water and Atmospheric Research, Lauder, New Zealand.-
crisitem.author.deptNIWA, Omakau, Central Otago, New Zealand.-
crisitem.author.deptInstitute of Applied Physics, University of Bern, Bern, Switzerland.-
crisitem.author.deptInstitute of Applied Physics, University of Bern, Bern, Switzerland.-
crisitem.author.deptInstitute of Applied Physics, University of Bern, Bern, Switzerland.-
crisitem.author.deptOASU/L3AB, Universite´ Bordeaux 1, CNRS-INSU, Floirac, France.-
crisitem.author.deptOASU/L3AB, Universite´ Bordeaux 1, CNRS-INSU, Floirac, France.-
crisitem.author.deptAstronomy Department, University of Massachusetts, Amherst,-
crisitem.author.deptNIWA-ERI, Ann Arbor, Michigan, USA.-
crisitem.author.deptMax-Planck-Institute for Chemistry, Mainz, Germany.-
crisitem.author.deptChemie der Atmosph¨are, Max Planck Institut f¨ur Chemie, Mainz, Germany-
crisitem.author.deptMax Planck Institute for Meteorology, Hamburg, Germany-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptNASA LARC, Hampton, Virginia, USA.-
crisitem.author.deptNASA LARC, Hampton, Virginia, USA.-
crisitem.author.deptNasa-
crisitem.author.deptHampton University, Hampton, Virginia, USA.-
crisitem.author.deptNASA GSFC, Greenbelt, Maryland, USA.-
crisitem.author.deptNASA GSFC, Greenbelt, Maryland, USA.-
crisitem.author.deptNASA GSFC, Greenbelt, Maryland, USA.-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent01. Atmosphere-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
1446.pdf1.2 MBAdobe PDFView/Open
Show simple item record

Page view(s) 50

424
checked on Apr 17, 2024

Download(s) 50

240
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric