Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/2580
DC FieldValueLanguage
dc.contributor.authorallBizzarri, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italia-
dc.contributor.authorallCocco, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia-
dc.date.accessioned2007-10-09T08:16:38Z-
dc.date.available2007-10-09T08:16:38Z-
dc.date.issued2006-
dc.identifier.urihttp://hdl.handle.net/2122/2580-
dc.description.abstractWe investigate the dynamic traction evolution during the spontaneous propagation of a 3-D earthquake rupture governed by slip-weakening or rate- and state-dependent constitutive laws and accounting for thermal pressurization effects. The analytical solutions as well as temperature and pore pressure evolutions are discussed in the companion paper by Bizzarri and Cocco. Our numerical experiments reveal that frictional heating and thermal pressurization modify traction evolution. The breakdown stress drop, the characteristic slip-weakening distance, and the fracture energy depend on the slipping zone thickness (2w) and hydraulic diffusivity (w). Thermally activated pore pressure changes caused by frictional heating yield temporal variations of the effective normal stress acting on the fault plane. In the framework of rate- and state-dependent friction, these thermal perturbations modify both the effective normal stress and the friction coefficient. Breakdown stress drop, slip-weakening distance, and specific fracture energy (J/m2) increase for decreasing values of hydraulic diffusivity and slipping zone thickness. We propose scaling relations to evaluate the effect of w and w on these physical parameters. We have also investigated the effects of choosing different evolution laws for the state variable. We have performed simulations accounting for the porosity evolution during the breakdown time. Our results point out that thermal pressurization modifies the shape of the slip-weakening curves. For particular configurations, the traction versus slip curves display a gradual and continuous weakening for increasing slip: in these cases, the definitions of a minimum residual stress and the slip-weakening distance become meaningless.en
dc.language.isoengen
dc.publisher.nameAguen
dc.relation.ispartofJ. Geophys. Res.en
dc.relation.ispartofseries/ 111 (2006)en
dc.subjectthermal pressurizationen
dc.titleA thermal pressurization model for the spontaneous ...: 2. Traction evolution and dynamic parametersen
dc.typearticle-
dc.description.statuspublished-
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberB05304en
dc.subject.INGV04. Solid Earth::04.01. Earth Interior::04.01.05. Rheologyen
dc.subject.INGV04. Solid Earth::04.02. Exploration geophysics::04.02.03. Heat flowen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamicsen
dc.identifier.doi10.1029/2005JB003864en
dc.relation.referencesAbercrombie, R. E., and J. R. Rice (2005), Can observations of earthquake scaling constrain slip weakening?, Geophys. J. Int., 162, 406–424. Andrews, D. J. (1976), Rupture propagation with finite stress in antiplane strain, J. Geophys. Res., 81, 3575– 3582. Andrews, D. J. (2002), A fault constitutive relation accounting for thermal pressurization of pore fluid, J. Geophys. Res., 107(B12), 2363, doi:10.1029/2002JB001942. Beeler, N. M., T. E. Tullis, and J. D. Weeks (1994), The roles of time and displacement in the evolution effect in rock friction, Geophys. Res. Lett., 21, 1987–1990. Bizzarri, A., and M. Cocco (2003), Slip-weakening behavior during the propagation of dynamic ruptures obeying rate- and state-dependent friction laws, J. Geophys. Res., 108(B8), 2373, doi:10.1029/2002JB002198. Bizzarri, A., and M. Cocco (2005), 3-D dynamic simulations of spontaneous rupture propagation governed by different constitutive laws with oblique initial stress direction, Ann. Geophys., 48, 277– 299. Bizzarri, A., and M. Cocco (2006), A thermal pressurization model for the spontaneous dynamic rupture propagation on a three-dimensional fault: 1. Methodological approach, J. Geophys. Res., 111, B05303, doi:10.1029/ 2005JB003862. Campillo, M., and I. R. Ionescu (1997), Initiation of antiplane shear instability under slip dependent friction, J. Geophys. Res., 102, 20,363– 20,371. Cocco, M., and A. Bizzarri (2002), On the slip-weakening behavior of rateand state dependent constitutive laws, Geophys. Res. Lett., 29(11), 1516, doi:10.1029/2001GL013999. Dalguer, L. A., K. Irikura, W. Zhang, and J. D. Riera (2002), Distribution of dynamic and static stress changes during 2000 Tottori (Japan) earthquake: Brief interpretation of the earthquake sequences; foreshocks, mainshock and aftershocks, Geophys. Res. Lett., 29(16), 1758, doi:10.1029/ 2001GL014333. Das, S., and K. Aki (1977a), A numerical study of two-dimensional spontaneous rupture propagation, Geophys. J. R. Astron. Soc., 50, 643–668. Das, S., and K. Aki (1977b), Fault plane with barriers: A versatile earthquake model, J. Geophys. Res., 82, 5658–5670. Fialko, Y. (2004), Temperature fields generated by the elastodynamic propagation of shear cracks in the Earth, J. Geophys. Res., 109, B01303, doi:10.1029/2003JB002497. Kanamori, H., and T. H. Heaton (2000), Microscopic and macroscopic physics of earthquakes, GeoComplexity and the Physics of Earthquakes, Geophys. Monogr. Ser., vol. 120, edited by J. B. Rundle, D. L. Turcotte, and W. Klein, pp. 147–163, AGU, Washington, D. C. Lachenbruch, A. H. (1980), Frictional heating, fluid pressure, and the resistance to fault motion, J. Geophys. Res., 85, 6097– 6122. Linker, M. F., and J. H. Dieterich (1992), Effects of variable normal stress on rock friction: Observations and constitutive equations, J. Geophys. Res., 97, 4923–4940. Mair, K., and C. Marone (1999), Friction of simulated fault gauge for a wide range of slip velocities and normal stresses, J. Geophys. Res., 104, 28,899–28,914. Manning, C. E., and S. E. Ingebritsen (1999), Permeability of the continental crust: Implications of geothermal data and metamorphic systems, Rev. Geophys., 37, 127–150. McGarr, A., J. B. Fletcher, and N. M. Beeler (2004), Attempting to bridge the gap between laboratory and seismic estimates of fracture energy, Geophys. Res. Lett., 31, L14606, doi:10.1029/2004GL020091. Miller, S. A. (2002), Properties of large ruptures and the dynamical influence of fluids on earthquakes and faulting, J. Geophys. Res., 107(B9), 2182, doi:10.1029/2000JB000032. Nakatani, M. (1998), A new mechanism of slip weakening and strength recovery of friction associated with the mechanical consolidation of gouge, J. Geophys. Res., 103, 27,239–27,256. Noda, H., and T. Shimamoto (2005), Thermal pressurization and slip-weakening distance of a fault: An example of the Hanaore Fault, Southwest Japan, Bull. Seismol. Soc. Am., 95(4), 1224 – 1233, doi:10.1785/ 0120040089. Ohnaka, M. (2003), A constitutive scaling law and a unified comprehension for frictional slip failure, shear fracture of intact rock, and earthquake rupture, J. Geophys. Res., 108(B2), 2080, doi:10.1029/2000JB000123. Ohnaka, M., Y. Kuwahara, and K. Yamamoto (1987), Constitutive relations between dynamic physical parameters near a tip of the propagating slip zone during stick-slip shear failure, Tectonophysics, 144, 109– 125. Okubo, P. G., and J. H. Dieterich (1984), Effects of physical fault properties on frictional instabilities produced on simulated faults, J. Geophys. Res., 89, 5817– 5827. Palmer, A. C., and J. R. Rice (1973), The growth of slip surfaces in the progressive failure of overconsolidated clay, Proc. R. Soc. London, Ser. A, 332, 527– 548. Scholz, C. H., N. H. Dawers, J.-Z. Yu, M. H. Anders, and P. A. Cowie (1993), Fault growth and fault scaling laws: Preliminary results, J. Geophys. Res., 98, 21,951–21,961. Segall, P., and J. R. Rice (1995), Dilatancy, compaction, and slip instability of a fluid-infiltrated fault, J. Geophys. Res., 100, 22,155–22,171. Sibson, R. H. (1977), Kinetic shear resistance, fluid pressures and radiation efficiency during seismic faulting, Pure Appl. Geophys., 115, 387– 400. Sibson, R. H. (2003), Thickness of the seismic slip zone, Bull. Seismol. Soc. Am., 93, 1169– 1178. Sleep, N. H. (1995a), Frictional heating and the stability of rate and state dependent frictional sliding, Geophys. Res. Lett., 22, 2785–2788. Sleep, N. H. (1995b), Ductile creep, compaction, and rate and state dependent friction within major fault zones, J. Geophys. Res., 100, 13,065– 13,080. Sleep, N. H. (1997), Application of a unified rate and state friction theory to the mechanics of fault zones with strain localization, J. Geophys. Res., 102, 2875– 2895. Sleep, N. H. (1999), Rate- and state-dependent friction of intact rock and gouge, J. Geophys. Res., 104, 17,847–17,855. Tinti, E., A. Bizzarri, A. Piatanesi, and M. Cocco (2004), Estimates of slip weakening distance for different dynamic rupture models, Geophys. Res. Lett., 31, L02611, doi:10.1029/2003GL018811. Tinti, E., P. Spudich, and M. Cocco (2005), Earthquake fracture energy inferred from kinematic rupture models on extended faults, J. Geophys. Res., 110, B12303, doi:10.1029/2005JB003644. Wibberley, C. A. J., and T. Shimamoto (2003), Internal structure and permeability of major strike-slip fault zones: The Median Tectonic Line in mid prefecture, southwest Japan, J. Struct. Geol., 25, 59–78.en
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorBizzarri, A.-
dc.contributor.authorCocco, M.-
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italia-
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia-
Appears in Collections:Papers Published / Papers in press
Files in This Item:
File Description SizeFormat 
733.pdf3.51 MBAdobe PDFView/Open
Show simple item record

Page view(s)

285
Last Week
0
Last month
1
checked on Sep 22, 2017

Download(s)

58
checked on Sep 22, 2017

Google ScholarTM

Check

Altmetric