Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/2573
DC FieldValueLanguage
dc.contributor.authorallCrespi, C.; DITS – Area di Geodesia e Geomatica, Universit`a di Roma ‘La Sapienza’, Roma.en
dc.contributor.authorallCuffaro, M.; Dipartimento di Scienze della Terra, Universit`a di Roma ‘La Sapienza’, Roma.en
dc.contributor.authorallDoglioni, C.; Dipartimento di Scienze della Terra, Universit`a di Roma ‘La Sapienza’, Roma.en
dc.contributor.authorallGiannone, F.; DITS – Area di Geodesia e Geomatica, Universit`a di Roma ‘La Sapienza’, Roma.en
dc.contributor.authorallRiguzzi, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.date.accessioned2007-10-08T16:03:10Zen
dc.date.available2007-10-08T16:03:10Zen
dc.date.issued2006en
dc.identifier.urihttp://hdl.handle.net/2122/2573en
dc.description.abstractSpace geodesy data are used to verify whether plates move chaotically or rather follow a sort of tectonic mainstream. While independent lines of geological evidence support the existence of a global ordered flow of plate motions that is westerly polarized, the Terrestrial Reference Frame (TRF) presents limitations in describing absolute plate motions relative to the mantle. For these reasons we jointly estimated a new plate motions model and three different solutions of net lithospheric rotation. Considering the six major plate boundaries and variable source depths of the main Pacific hotspots, we adapted the TRF plate kinematics by global space geodesy to absolute plate motions models with respect to the mantle. All three reconstructions confirm (i) the tectonic mainstream and (ii) the net rotation of the lithosphere. We still do not know the precise trend of this tectonic flow and the velocity of the differential rotation. However, our results show that assuming faster Pacific motions, as the asthenospheric source of the hotspots would allow, the best lithospheric net rotation estimate is 13.4 ± 0.7 cm yr−1. This superfast solution seems in contradiction with present knowledge on the lithosphere decoupling, but it matches remarkably better with the geological constraints than those retrieved with slower Pacific motion and net rotation estimates. Assuming faster Pacific motion, it is shown that all plates move orderly ‘westward’ along the tectonic mainstream at different velocities and the equator of the lithospheric net rotation lies inside the corresponding tectonic mainstream latitude band (≈±7◦), defined by the 1σ confidence intervals.en
dc.language.isoEnglishen
dc.relation.ispartofGeophys. J. Int.en
dc.subjectlithosphericen
dc.subjectgeodesyen
dc.titleSpace geodesy validation of the global lithospheric flowen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.subject.INGV04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneousen
dc.identifier.doi10.1111/j.1365-246X.2006.03226.xen
dc.relation.referencesAltamimi, Z., Sillard, P. & Boucher, C., 2002. ITRF2000: A new release of the International Terrestrial Reference Frame for earth science applications J. geophys. Res., 107(B10), 2214, doi:10.1029/2001JB000561. Altamimi, Z., Sillard, P. & Boucher, C., 2003. The impact of no-netrotation condition on ITRF2000, Geophys. Res. Lett., 30(2), 1064, doi:10.1029/2002GL016279. Anderson, D.L., 2000, Thermal state of the upper mantle; no role for mantle plumes, Geophys. Res. Lett., Vol. 27, 22, 3623–3626. Anderson, D.L., 2005. Scoring hotspots; the plume & plate paradigms: in Plates, Plumes and Paradigms, pp. 31–54, eds Foulger, G.R., Natland, J.H., Presnall, D.C. & Anderson, D.L., GSA Sp. Paper 388. Argus, D.F. & Gordon, R.G., 1991. No-net-rotation model of current plate velocities incorporating plate motion model NUVEL-1, Geophys. Res. Lett., 18, 2038–2042. Barzaghi, R., Borghi, A., Crespi, M., Pietrantonio, G. & Riguzzi F., 2004. GPS permanent network solution: the impact of temporal correlations, Proceedings of the V Hotine-Marussi Symposium on Mathematical Geodesy, Vol. 127, pp. 179–183, ed. Sans`o, F., Springer-Verlag, Berlin, Heidelberg, New York. Biagi, L., Pietrantonio, G. & Riguzzi, F., 2005. Tidal and polar modeling effect on regional GPS networks, poster presented at EGU 2005 General Assembly, Vienna. Bonatti, E., 1990. Not so hot ‘hot spots’ in the oceanic mantle, Science, 250, 107–111. Bostrom, R.C., 1971. Westward displacement of the lithosphere, Nature, 234, 356–538. Courtillot, V., Davaille, A., Besse, J. & Stock J., 2003. Three distinct types of hotspot in the Earth’s mantle, Earth planet. Sci. Lett., 205, 295–308. Cuffaro, M., Caputo, M.&Doglioni, C., 2004. On the sub-rotation of a plate, J. Virtual Explor., 14(2), 1–15, Electronic Edition. Davies, G.F., 1988. Ocean bathymetry and mantle convection: 1. large-scale flow and hotspots, J. geophys. Res., 93, 10 467–10 480. DeMets, C., Gordon, R.G., Argus, F.&Stein, S., 1990. Current plate motions, Geophys. J. Int., 101, 425–478. DeMets, C., Gordon, R.G., Argus, F. & Stein, S., 1994. Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions, Geophys. Res. Lett., 21, 2121–2194. Dermanis, A., 2001. Global Reference Frames: Connecting Observation to Theory and Geodesy to Geophysics, IAG Scientific Assembly. Dermanis, A., 2002. The rank deficiency in estimation theory and the definition of reference frames, Proceedings of V Hotine-Marussi Symposium on Mathematical Geodesy, Vol. 127, pp. 145–156, ed. Sanso’, F., IAG Symposia, Springer-Verlag, Berlin, Heidelberg, New York. Doglioni, C., 1990. The global tectonic pattern, J. Geodyn., 12, 21–38. Doglioni, C., 1993. Geological evidence for a global tectonic polarity, J. geol. Soc. Lond., 150, 991–1002. Doglioni, C., Harabaglia, P., Merlini, S., Mongelli, F., Peccerillo, A. & Piromallo, C., 1999. Orogens and slabs vs their direction of subduction, Earth Sci. Rev., 45, 167–208. Doglioni, C., Carminati, E. & Bonatti, E., 2003. Rift asymmetry and continental uplift, Tectonics, 22(3), 1024, doi:10.1029/2002TC001459. Doglioni, C., Green, D. & Mongelli, F., 2005. On the shallow origin of hotspots and the westward drift of the lithosphere, in Plates, Plumes and Paradigms, pp. 735–749, eds Foulger, G.R., Natland, J.H., Presnall, D.C. & Anderson, D.L., GSA Sp. Paper 388. Drewes, H. & Meisel, B., 2003. An Actual Plate Motion and Deformation Model as a Kinematic Terrestrial Reference System, Geotechnologien Science Report No. 3, 40–43, Potsdam. Fischer, K.M., Fouch, M.J., Wiens, D.A. & Boettcher, M.S., 1998. Anisotropy and Flow in Pacific Subduction Zone Back-arcs, Pure appl. geophys., 151, 463–475. Forsyth, D. & Uyeda, S., 1975. On the relative importance of driving forces of plate motion, Geophys. J. R. astr. Soc., 43, 163–200. Foulger, G.R., Natland, J.H., Presnall, D.C. & Anderson, D.L., 2005. Plates, Plumes and Paradigms, GSA Sp. Paper 388, 1–861. Gordon, R.G., 1995. Present plate motion and plate boundaries, Glob. Earth Phys., AGU Ref. Shelf, 1, 66–87. Gripp, A.E. & Gordon, R.G., 2002. Young tracks of hotspots and current plate velocities, Geophys. J. Int., 150, 321–361. Heflin, M. et al., 2004. http://sideshow.jpl.nasa.gov/mbh/series.html. Hirth, G. & Kohlstedt, D.L., 1996.Water in the oceanic upper mantle: implications for rheology, melt extraction and the evolution of the lithosphere, Earth planet. Sci. Lett., 144, 93–108. Holtzman, B.K., Groebner, N.J., Zimmerman, M.E., Ginsberg, S.B. & Kohlstedt, D.L., 2003. Stress-driven melt segregation in partially molten rocks, G3, 4, 8607, doi:10.1029/2001GC000258. Kendrick, E., Bevis, M., Smalley, Jr. R., Brooks, B., Barriga Vargas, R., Laurı a, E. & Souto Fortes, L.P., 2003. The Nazca–South America Euler vector and its rate of change, J. South Amer. Earth Sci., 16, 125– 131. Knopoff, L. & Leeds, A., 1972. Lithospheric Momenta and the Deceleration of the Earth, Nature, 237(2), 93–95. Le Pichon, X., 1968. Sea-floor spreading and continental drift, J. geophys. Res., 73(12), 3661–3697. McCarthy,D.D.&Petit, G., 2004. IERS Conventions (2003), IERSTechnical Note No. 32, Verlag des Bundesamts f¨ur Kartographie uns Geod¨asie, Frankfurt am Main. Montagner, J.-P., 2002. Upper mantle low anisotropy channels below the Pacific Plate, Earth planet. Sci. Lett., 202, 263–274. Morgan, W.J., 1971. Convection plumes in the lower mantle, Nature, 230, 42–43. Natland, J.H. & Winterer, E.L., 2005. Fissure control on volcanic action in the Pacific, in Plates, Plumes and Paradigms, eds Foulger, G.R., Natland, J.H., Presnall, D.C. & Anderson, D.L., GSA Sp. Paper 388, Norton, I.O., 1995. Plate motions in the North Pacific; the 43 Ma non event, Tectonics, 14, 1080–1094. O’Connell, R., Gable, C.G.&Hager,B., 1991.Toroidal-poloidal partitioning of lithospheric plate motions, in Glacial Isostasy, Sea-Level and Mantle Rheology, Vol. 334, pp. 535–551, eds Sabadini, R., Boschi, E., Kluwer Academic Publisher, Dordrecht, The Netherlands. Panza, G., 1980. Evolution of the Earth’s lithosphere, in Mechanisms of Continental Drift and Plate Tectonics, pp. 75–87, eds Davies, P.A. & Runcorn, S.K., Academic Press. Ranalli, G., 2000.Westward drift of the lithosphere: not a result of rotational drag, Geophys. J. Int., 141, 535–537. Ricard, Y., Doglioni, C. & Sabadini, R., 1991. Differential rotation between lithosphere and mantle: a consequence of lateral viscosity variations, J. geophys. Res., 96, 8407–8415. Ritsema, J. & Allen, R.M., 2003. The elusive mantle plume, Earth planet. Sci. Lett., 207, 1–12. Rychert, C.A., Fischer, C.M. & Rondenay, S., 2005. A sharp lithosphere– asthenosphere boundary imaged beneath eastern North America, Nature, 436, 542–545. Savage, M.K., 1999. Seismic anisotropy and mantle deformation: What have we learned from shear wave splitting?, Rev. Geophys., 37(1), 65–106. Schettino, A., 1999. Computational methods for calculating geometric parameters of tectonic plates, Comput. Geosci., 25, 897–907. Scoppola, B., Boccaletti, D., Bevis, M., Carminati, E. & Doglioni, C., 2006, The westward drift of the lithosphere: a rotational drag?, Bull. Geol. Soc. Am., 118, 1/2, 199–209, doi:10.1029/2004TC001634. Searle, R.C., 1986. GLORIA investigations of oceanic fracture zones: comparative study of the trasform fault zone, J. geol. Soc., Lond., 143, 743– 756. Silver, P.G.&Holt,W.E., 2002. The mantle flow field beneath western North America, Science, 295, 1054–1057. Smith, A.D., 1993. The continental mantle as a source for hotspot volcanism, TerraNova, 5, 452–460. Smith, A.D. & Lewis, C., 1999. The planet beyond the plume hypothesis, Earth Sci. Rev., 48, 135–182. Stein, S., 1993. Space geodesy and plate motions, Amer. Geophys. Union, Geodyn. Series, 23, 5–20. Thybo, H., 2006. The heterogeneous upper mantle low velocity zone, Tectonophysics, 416, 53–79. Von K´arm´an, T. & Biot, M.A., Metodi matematici nell’ingegneria, Einaudi edition, 1951, in Italian. Wessel, P.&Smith,W.H.F., 1995. The Generic Mapping Tools (GMT) version 3.0, Technical Reference & Cookbook, SOEST/NOAA.en
dc.description.fulltextreserveden
dc.contributor.authorCrespi, C.en
dc.contributor.authorCuffaro, M.en
dc.contributor.authorDoglioni, C.en
dc.contributor.authorGiannone, F.en
dc.contributor.authorRiguzzi, F.en
dc.contributor.departmentDITS – Area di Geodesia e Geomatica, Universit`a di Roma ‘La Sapienza’, Roma.en
dc.contributor.departmentDipartimento di Scienze della Terra, Universit`a di Roma ‘La Sapienza’, Roma.en
dc.contributor.departmentDipartimento di Scienze della Terra, Universit`a di Roma ‘La Sapienza’, Roma.en
dc.contributor.departmentDITS – Area di Geodesia e Geomatica, Universit`a di Roma ‘La Sapienza’, Roma.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptDITS – Area di Geodesia e Geomatica, Universit`a di Roma ‘La Sapienza’, Roma.-
crisitem.author.deptDipartimento di Scienze della Terra, Universit`a di Roma ‘La Sapienza’, Roma.-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione AC, Roma, Italia-
crisitem.author.deptNiccolò Cusano University, Roma, Italy-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.orcid0000-0002-8651-6387-
crisitem.author.orcid0000-0003-3453-5110-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
1166.pdf3.03 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

58
checked on Feb 10, 2021

Page view(s) 20

287
checked on Mar 27, 2024

Download(s)

29
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric