Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/2518
DC FieldValueLanguage
dc.contributor.authorallBindi, D.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Milano-Pavia, Milano, Italiaen
dc.contributor.authorallParolai, S.; GeoForschungsZentrum Potsdam Telegrafenbergen
dc.contributor.authorallGrosser, H.; GeoForschungsZentrum Potsdam Telegrafenbergen
dc.contributor.authorallMilkereit, C.; GeoForschungsZentrum Potsdam Telegrafenbergen
dc.contributor.authorallKarakisa, S.; Ministry of Public Works and Settlement General Directorate of Disaster Affairs Earthquake Research Departmenten
dc.date.accessioned2007-09-20T10:26:08Zen
dc.date.available2007-09-20T10:26:08Zen
dc.date.issued2006en
dc.identifier.urihttp://hdl.handle.net/2122/2518en
dc.description.abstractWe have analyzed the aftershocks (ML 4.5) following the 1999 Izmit earthquake (Mw 7.4) to infer the frequency-dependent attenuation characteristics of both P and S waves, in the frequency range from 1 to 10 Hz and in the distance range from 10 to 140 km. A linear-predictive model is assumed to describe the spectral amplitudes in terms of attenuation and source contributions. The results show that both P and S waves undergo a strong attenuation along ray paths shorter than 40 km, while the secondary arrivals significantly contribute to the spectral amplitudes over the distance range from 40 to 60 km, as also confirmed by the computation of synthetic seismograms. For longer ray paths, the decrease in attenuation suggests an increase in the propagation efficiency with depth. Finally, the spectral attenuation curves are flattened, or sloped upward at low frequencies in the range from 100 to 140 km, due to the contemporary arrivals of direct waves and postcritical reflections from the Moho. In terms of geometrical spreading and anelastic attenuation, the attenuation in the range from 10 to 40 km is well described by a spreading coefficient n 1 for both P and S waves, and the quality factors can be approximated by QS( f ) 17f 0.80 for 1 f 10 Hz and QP( f ) 56f 0.25 for 2.5 f 10 Hz. For ray paths in the range from 60 to 80 km, the attenuation weakens but the interaction between seismic waves and propagation medium is more complex. The multilapse time window analysis (MLTWA) is applied to quantify the amount of scattering loss and intrinsic absorption for S waves. The seismic albedo B0 decreases from 0.5 at 1 Hz to 0.3 at 10 Hz, while the total quality factor QT increases from about 56 to 408. The multiple lapse time-window analysis (MLTWA) results provide only an average estimate of the attenuation properties in the range from 10 to 80 km. In fact, by neglecting the variation of attenuation with depth, the MLTWA results underestimate attenuation for distances less than 40 km, and do not capture the significant features caused by the integrated energy of the secondary arrivals observed in the range from 40 to 60 km.en
dc.language.isoEnglishen
dc.publisher.nameSeismological Society of Americaen
dc.relation.ispartofBull. Seismol. Soc. Amer.en
dc.relation.ispartofseries1/ 96 (2006)en
dc.subjectaftershocksen
dc.titleCrustal attenuation characteristics in northwestern Turkey in the range from 1 to 10 Hzen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber200-214en
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysisen
dc.identifier.doi10.1785/0120050038en
dc.relation.referencesAki, K. (1980). Attenuation of shear-waves in the lithosphere for frequencies from 0.05 to 25 Hz, Phys. Earth Planet. Interiors 21, 50–60. Akinci, A., and H. Eyidogan (1996). Frequency-dependent attenuation of S and coda waves in Erzincan region (Turkey), Phys. Earth Planet. Interiors 97, 109–119. Akinci, A., and H. Eyidogan (2000). Scattering and anelastic attenuation of seismic energy in the vicinity of North Anatolian fault zone, eastern Turkey, Phys. Earth Planet. Interiors 122, 229–239. Akinci, A., E. Del Pezzo, and J. M. Ibanez (1995). Separation of scattering and intrinsic attenuation in southern Spain and western Anatolia (Turkey), Geophys. J. Int. 121, 337–353. Akinci, A., J. M. Ibanez, E. Del Pezzo, and J. Morales (1995). Geometrical spreading and attenuation of Lg waves: a comparison between western Anatolia (Turkey) and southern Spain, Tectonophysics 250, 47– 60. Akinci, A., J. Mejia, and A. Jemberie (2004). Attenuative disperision of P waves and crustal Q in Turkey and Germany, Pure Appl. Geophys. 161, 73–91. Akyol, N., A. Akinci, and H. Eyidogan (2002). Separation of source, propagation, and site effects from S waves of local earthquakes in Bursa region, northwestern Turkey, Pure Appl. Geophys. 159, 1253–1269. Anderson, D. L., and R. S. Hart (1978). Q of the earth, J. Geophys. Res. 83, 5869–5882. Anderson, J. G. (1991). A preliminary descriptive model for the distance dependence of the spectral decay parameter in southern California, Bull. Seism. Soc. Am. 81, 2186–2193. Atkinson, G. M., and R. Mereu (1992). The shape of ground motion attenuation curves in southeastern Canada, Bull. Seism. Soc. Am. 82, 2014– 2031. Bakun, W. H., and W. B. Joyner (1984). The ML scale in central California, Bull. Seism. Soc. Am. 74, 1827–1843. Baumbach, M., D. Bindi, H. Grosser, C. Milkereit, S. Parolai, R. Wang, S. Karakisa, S. Zu¨nbu¨l, and J. Zschau (2003). Calibration of an ML scale in northwestern Turkey from 1999 Izmit aftershocks, Bull. Seism. Soc. Am. 93, 2289–2295. Boztepe-Gu¨ney, A., and G. Horasan (2002). Enhanced ground motions due to large-amplitude critical Moho reflections (SmS) in the Sea of Marmara, Turkey, Geophys. Res. Lett. 29, 9-1–9-4. Burger, R. W., P. G. Somerville, J. S. Barker, R. B. Herrmann, and D. V. Helmberger (1987). The effect of crustal structure on strong ground motion attenuation relations in eastern North America, Bull. Seism. Soc. Am. 77, 420–439. Carpenter, P. J., and A. R. Sanford (1985). Apparent Q for upper crustal rocks of the central Rio Grande rift, J. Geophys. Res. 90, 8661–8674. Castro, R. R., J. G. Anderson, and S. K. Singh (1990). Site response, attenuation and source spectra of S waves along the Guerrero, Mexico, subduction zone, Bull. Seism. Soc. Am. 80, 1481–1503. Chen, K.-C., J.-M. Chiu, and Y.-T. Yang (1994). QP-QS relations in the sedimentary basin of the upper Mississippi Embayment using converted phases, Bull. Seism. Soc. Am. 84, 1861–1868. Clouser, R. H., and C. A. Langstone (1991). QP-QS relations in a sedimentary basin using converted phases, Bull. Seism. Soc. Am. 81, 733–750. Dutta, U., N. N. Biswas, D. A. Adams, and A. Papageorgiou (2004). Analysis of S-wave attenuation in south-central Alaska, Bull. Seism. Soc. Am. 94, 16–28. Fehler, M., M. Hoshiba, H. Sato, and K. Obara (1992). Separation of scattering and intrinsic attenuation for the Kanto-Tokai region, Japan using measurements of S-wave energy vs hypocentral distance, Geophys. J. Int. 108, 787–800. Frankel, A., A. McGarr, J. Bicknell, J. Mori, L. Seeber, and E. Cranswich (1990). Attenuation of high-frequency shear waves in the crust: measurements from New York state, South Africa, and southern California, J. Geophys. Res. 95, 17,441–17,457. Grosser, H., M. Baumbach, H. Berckhemer, B. Baier, A. Karahan, H. Schelle, F. Kru¨ger, A. Paulat, G. Michel, R. Demirtas, S. Genocoglu, and R. Yilmaz (1998). The Erzincan (Turkey) earthquake (MS 6.8) of March 13, 1992 and its aftershocks sequence, Pure Appl. Geophys. 152, 465–505. Gu¨ndu¨z, H., A. Kaslilar-O¨ zcan, A. Boztepe-Gu¨ney, and T. Niyazi (1998). S-wave attenuation in the Marmara sea, northwestern Turkey, Geophys. Res. Lett. 25, 2733–2736. Hartzell, S. H. (1992). Site response estimation from earthquake data, Bull. Seism. Soc. Am. 82, 2308–2327. Horasan, G., and A. Boztepe-Gu¨ney (2004). S-wave attenuation in the Sea of Marmara, Turkey, Phys. Earth Planet. Interiors 142, 215–224. Hoshiba, M. (1991). Simulation of multiple scattered coda waves excitation based on the energy conservation law, Phys. Earth Planet. Interiors 67, 123–136. Hoshiba, M. (1993). Separation of scattering attenuation and intrinsic absorption in Japan using the multiple lapse time window analysis of full seismogram envelope, J. Geophys. Res. 98, 15,809–15,824. Hoshiba, M. (1997). Seismic coda envelope in depth-dependent S wave velocity structure, Phys. Earth Planet. Interiors 104, 15–22. Hoshiba, M., A. Rietbrock, F. Scherbaum, H. Nakahara, and C. Haberland (2001). Scattering attenuation and intrinsic absorption using uniform and depth dependent model—application to full seismogram envelope recorded in northern Chile, J. Seism. 5, 157–179. Hutton, L. K., and D. M. Boore (1987). TheML scale in southern California, Bull. Seism. Soc. Am. 77, 2074–2094. Johnston, D. H., and M. D. Tokso¨z (1980). Ultrasonic P and S wave attenuation in dry and saturated rocks under pressure, J. Geophys. Res. 85, 925–936. Kadinsky-Cade, K., M. Barazangi, J. Oliver, and B. Isacks (1981). Lateral variation of high-frequency seismic wave propagation at regional distances across the Turkish and Iranian plateaus, J. Geophys. Res. 86, 9377–9396. Karahan, A. E., H. Berckhemer, and B. Baier (2001). Crustal structure at the west end of the North Anatolian Fault Zone from deep seismic sounding, Annali di geofisica 44, 49–68. Kaslilar-O¨ zcan, A., A. Boztepe-Gu¨ney, and B. Ecevitoglu (2002). Estimation of attenuation structure in the Cinarcik Basin of the Marmara sea, northwest Turkey, Phys. Earth Planet. Interiors 130, 1–16. Konno, K., and T. Ohmachi (1998). Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremors, Bull. Seism. Soc. Am. 88, 1228–1241. Liu, Z., M. E. Wuenscher, and R. B. Herrmann (1991). Attenuation of body waves in the central New Madrid seismic zone, Bull. Seism. Soc. Am. 84, 1112–1122. Menke, W., and R. Chen (1984). Numerical studies of the coda falloff rate of multiply scattered waves in randomly layered media, Bull. Seism. Soc. Am. 5, 1605–1621. Menke, W. (1989). Geophysical data analysis: discrete inverse theory, in Int. Geophys. Series, R. Dmowska and J. R. Holton (Series Editors), Vol. 45, Academic Press, New York, 289 pp. Mori, J., and D. Helmberger (1996). Large-amplitude Moho reflections (SmS) from Landers aftershocks, southern California, Bull. Seism. Soc. Am. 86, 1845–1852. Paige, C. C., and M. A. Saunders (1982). An algorithm for sparse linear equations and sparse least squares, ACM Trans. Math. Software 8, 43–71. Parolai, S., D. Bindi, M. Baumbach, H. Grosser, C. Milkereit, S. Karakisa, and S. Zu¨nbu¨l (2004). Comparison of different site response estimation techniques using aftershocks of the 1999 Izmit earthquake, Bull. Seism. Soc. Am. 94, 1096–1108. Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery (1994). Numerical recipes in C, 1994. Sato, H., and M. Fehler (1998). Seismic Wave Propagation and Scattering in the Heterogeneous Earth. AIP Press/Springer Verlag, New York. Somerville, P., and J. Yoshimura (1990). The influence of critical Moho reflections on strong ground motions recorded in San Francisco and Oakland during the 1989 Loma Prieta earthquake, Geophys. Res. Lett. 17, 1203–1206. Spencer, J. W. (1979). Bulk and shear attenuation in Berea sandstone: the effects of pore fluids, J. Geophys. Res. 84, 7521–7523. Tokso¨z, M. D., D. H. Johnston, and A. Timur (1979). Attenuation of seismic waves in dry and saturated rocks, I, laboratory measurements, Geophysics 44, 681–690. Wang, R. (1999). A simple orthonormalization method for stable and efficient computation of Green’s function, Bull. Seism. Soc. Am. 89, 733–716. Wessel, P., and W. H. F. Smith (2000). The Generic Mapping Tools (GMT), version 3.3.6, http://gmt.soest.hawaii.edu/gmt.html (last accessed October 2000). Winkler, K. W., and A. Nur (1982). Seismic attenuation: effects of pore fluids and frictional sliding, Geophysics 47, 1–15. Wu, R. (1985). Multiple scattering and energy transfer of seismic waves: separation of scattering effect from intrinsic attenuation, I. theoretical modelling, Geophys. J. R. Astr. Soc. 82, 57–80. Zeng, Y., F. Su, and K. Aki (1991). Scattering wave energy propagation in a random isotropic scattering medium: I theory, J. Geophys. Res. 96, 607–619.en
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorBindi, D.en
dc.contributor.authorParolai, S.en
dc.contributor.authorGrosser, H.en
dc.contributor.authorMilkereit, C.en
dc.contributor.authorKarakisa, S.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Milano, Milano, Italiaen
dc.contributor.departmentGeoForschungsZentrum Potsdam Telegrafenbergen
dc.contributor.departmentGeoForschungsZentrum Potsdam Telegrafenbergen
dc.contributor.departmentGeoForschungsZentrum Potsdam Telegrafenbergen
dc.contributor.departmentMinistry of Public Works and Settlement General Directorate of Disaster Affairs Earthquake Research Departmenten
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptOGS - Istituto Nazionale di Oceanografia e di Geofisica Sperimentale-
crisitem.author.deptGeoForschungsZentrum Potsdam Telegrafenberg-
crisitem.author.deptGFZ, Potsdam - Germany-
crisitem.author.deptMinistry of Public Works and Settlement General Directorate of Disaster Affairs Earthquake Research Department-
crisitem.author.orcid0000-0002-8619-2220-
crisitem.author.orcid0000-0002-9084-7488-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
239.pdf721.91 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 10

42
checked on Feb 10, 2021

Page view(s) 50

171
checked on Apr 20, 2024

Download(s)

30
checked on Apr 20, 2024

Google ScholarTM

Check

Altmetric