Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/2498
DC FieldValueLanguage
dc.contributor.authorallHeinicke, J.; Sachsische Akademie der Wissenschaften zu Leipzig, Arbeitsstelle an der TU Bergakademie Freiberg, Leipziger Str. 23, 09599 Freiberg, Germany.en
dc.contributor.authorallBraun, T.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallBurgassi, P.; Air Liquide Italia srl., 52100 Arezzo, Italyen
dc.contributor.authorallItaliano, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.authorallMartinelli, G.; ARPA Emilia Romagna, Via Amendola 2, 42100 Reggio Emilia, Italyen
dc.date.accessioned2007-09-19T07:45:48Zen
dc.date.available2007-09-19T07:45:48Zen
dc.date.issued2006en
dc.identifier.urihttp://hdl.handle.net/2122/2498en
dc.description.abstractCold CO2 gas emission sites in rainwater-filled pools, so called mofettes, are widely distributed all over Italy. Their gas reservoirs, mostly having a high CO2 content, have a magmatic and/or metamorphic origin. Temporal variations in fluid expulsions were observed at the mofettes of Caprese Michelangelo during the period from 2002 to 2005. These observations were made possible by using a new approach: photographic time-series. A first interpretation of these fluid expulsionswas based on meteorological/hydrogeological explanations.However, our long-term observations show that these processes may merely be a side effect. The probable main reason for the anomalous emissions is the long-term variation in the long-distance fluid transport process from the reservoir induced by the local tectonic settings. In the northern part of the Alto Tiberina Fault, a fault intersection was reactivated by a seismic sequence which started on 2001 November 26, and continued for approximately four months. The magnitude of the main shock was MW = 4.6. As revealed by the drilling of a deep borehole, dug in the direct vicinity, overpressurized fluids trapped at a depth of 3700 m could be activated as a consequence of the improved transport conditions, that is, the fracture apertures that materialized as a result of the rupture process. A migration of the hypocentres towards the surface provides hints of a possible pore pressure diffusion process. The consequence is an increased fluid transport to the mofettes. The first indications of anomalous fluid expulsions at the mofettes of Caprese Michelangelo were detected 18 months after the seismic events.en
dc.language.isoEnglishen
dc.relation.ispartofGeophys. J. Int.en
dc.relation.ispartofseries/ 167 (2006)en
dc.subjectearthquakesen
dc.subjectfluid dynamicsen
dc.subjecthydrodynamicsen
dc.subjectmicroearthquakesen
dc.subjectpore pressure diffusionen
dc.subjectseismotectonicsen
dc.titleGas flow anomalies in seismogenic zones in the Upper Tiber Valley, Central Italyen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber794-806en
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistryen
dc.subject.INGV04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonicsen
dc.subject.INGV05. General::05.02. Data dissemination::05.02.01. Geochemical dataen
dc.identifier.doi10.1111/j.1365-246X.2006.03134.xen
dc.relation.referencesAnelli, L., Gorza, M., Pieri, M. & Riva, M., 1994. Subsurface well data in the Northern Apennines (Italy), Mem. Soc. Geol. It., 48, 461–471. Antonioli, A., Piccinini, D., Chiaraluce, L. & Cocco, M., 2005. Fluid flow and seismic pattern: evidence from the 1997 Umbria-Marche (Central Italy) seismic sequence, Geophys. Res. Lett., 32, L10311. Barchi, M., 2002. Lithological and structural controls on the seismogenesis of the Umbria Region: observations from seismic reflection profiles. - Atti del Convegno ‘Evoluzione geologica e geodinamica dell’Appennino’, in memoria di Giampaolo Pialli, Boll. Soc. Geol. It., Vol. Spec. 1, 855–864. Barchi, M.R., Magnani, M.B., Minelli, G., Pialli, G. & Sotera, B.M., 1995. Osservazioni geofisiche sul basamento della regione umbro-marchigiana, Proc. 14th Conference Gruppo Nazionale di Geofisica della Terra Solida, 2, 709–720. Barchi, M.R., De Feyter, A., Magnani, M.B., Minelli, G., Pialli, G.&Sotera, B.M., 1998. Extensional tectonics in the Northern Apennines (Italy): evidence from the CROP03 deep seismic reflection line, Mem. Soc. Geol. It., 52, 527–538. Boncio, P., Brozzetti, F., Ponziani, F., Barchi, M., Lavecchia, G. & Pialli, G., 1998. Seismicity and extensional tectonics in the northern Umbria- Marche Apennines, Mem. Soc. Geol. It., 52, 539–555. Boncio, P., Brozzetti, F. & Lavecchia, G., 2000. Architecture and seismotectonics of a low-angle fault in central Italy, Tectonics, 19, 1038–1055. Bonori, O. et al., 2000. Geochemical and geophysical monitoring in tectonically active areas of the Po Valley (Northern Italy). Case histories linked to gas emission structures, Geografica Fisica Dinamica Quaternaria, 23, 3–20. Boschi, E., Gasperini, P. & Valensise, G., 1999. Catalogo Parametrico dei Terremoti Italiani. Gruppo di Lavoro CPTI, 1999 - ING, GNDT, SGA, SSN, Bologna, 92 p. Braun, T., Chiarabba, C., Ciaccio, M.G., Di Luccio, F. & Piccinini, D., 2002. Evidenze di attivita’ sismica sulla faglia Altotiberina, Atti 21◦ Convegno G.N.G.T.S., 19.-21. Nov. 2002, Roma/Italy. Braun, T., Ciaccio, M.G., Di Luccio, F. & Piccinini, D., 2006. Evidence for seismic activity on the ‘Alto Tiberina Fault’ system (Central Italy), Ann. Geophys., submitted. Br¨auer, K., K¨ampf, H., Strauch, G. &Weise, S.M., 2003. Isotopic evidences (3He/4He, δ13CCO2) of fluid-triggered intraplate seismicity, J. geophys. Res., 108, ESE3 1–11. Caracausi, A., Italiano, F., Martinelli, G., Paonita, A. & Rizzo, A., 2005. Long-term geochemical monitoring and extensive/compressive phenomena: case study of the Umbria Region (Central Apennines, Italy), Ann. Geophys., 48, 43–53. Castello B., Selvaggi, G., Chiarabba C. & Amato A., 2005. CSI Catalogo della sismicit`a italiana 1981–2002, versione 1.0. INGV-CNT, Roma http://www.ingv.it/CSI/ . Chadha, R.K., Pandey, A.P. & Kuempel, H.J., 2003. Search for earthquake precursors in well water levels in a localized seismically active area of reservoir triggered earthquakes in India, Geophys. Res. Lett., 30, 1–4. Chiaraluce, L., Barchi, M., Collettini, C., Mirabella, F. & Pucci, S., 2005. Connecting seismically active normal faults with Quaternary geological structures in a complex extensional environment: the Colfiorito 1997 case history (Northern Apennines, Italy), Tectonics, 24, TC1002. Chiodini, G., Cardellini, C., Amato, A., Boschi, E., Caliro, S., Frondini, F. & Ventura G., 2004. Carbon dioxide Earth degassing and seismogenesis in Central and Southern Italy. Geophys. Res. Lett., 31, L07615. Collettini, C., 2002. Hypothesis of the mechanical and seismic behavior of low-angle normal faults: the example of the Altotiberina fault, Northern Apennines, Ann. Geophys., 45, 683–698. Collettini, C. & Barchi, M.R., 2002. A low-angle fault in the Umbria region (Central Italy): a mechanical model for the related microseismicity, Tectonophysics, 359, 97–115. Collettini, C. & Sibson, R.H., 2001. Normal faults, normal friction?, Geology, 29, 927–930. Curewitz, D. & Karson, J.K., 1997. Structural settings of hydrothermal outflow: fracture permeability maintained by fault propagation and interaction, J. Volc. Geotherm. Res., 79, 149–168. Delle Rose, M., Guerrera, F., Renzulli, A., Ravasz-Baranyai, L. & Serrano, F., 1994. Stratigrafia e petrografia delle marne di Vicchio (unit`a tettonica Cervarola) dell’Alta Val Tiberina (Appennino Tosco-Romagnolo), Mem. Soc. Geol. It., 113, 675–708. Favara, R., Italiano, F. & Martinelli, G., 2001. Earthquake induced chemical changes in the thermal waters of the Umbria region during the 1997–1998 seismic swarm, TerraNova, 13, 227–233. Gasparini, C., Di Maro, R., Pagliuca, N.M., Pirro, M.&Marchetti, A., 2002. Recent seismicity of the ‘Acque Albule’ travertine basin, Ann. Geophys., 45, 537–550. Gavrilenko, P., 2005. Hydromechanical coupling in response to earthquakes: on the possible consequences for aftershocks, Geophys. J. Int., 161, 113– 129. Gudmundsson, A., 2001. Fluid overpressure and flow in fault zones: field measurements and models, Tectonophysics, 336, 183–197. Gudmundsson, A., Fjeldskaar, I. & Brenner, S.L., 2002. Propagation pathways and fluid transport of hydrofractures in jointed and layered rocks in geothermal fields, J. Volc. Geotherm. Res., 116, 257–278. Gudmundsson, A., Gjesdal, O., Brenner, S.L. & Fjeldskaar, I., 2003. Effects of linking up of discontinuities on fracture growth and groundwater transport, Hydrogeol. J., 11, 84–99. Hainzl, S. & Ogata, Y., 2005. Detecting fluid signals data through statistical earthquake modeling, J. geophys. Res., 110, B05S07. Heinicke, J. & Koch, U., 2000. Slug flow—a possible explanation for hydrogeochemical earthquake precursors at Bad Brambach, Germany, Pure appl. Geophys., 157, 1621–1641. Hickman, S., Sibson, R. & Bruhn, R., 1995. Introduction to special section: mechanical involvement of fluids in faulting, J. geophys. Res., 100, 12 831–12 840. Huenges, E., Erzinger, J.,K¨uck, J., Engeser, B.&Kessels,W., 1997. The permeable crust: geohydraulic properties down to 9101 m depth. J. geophys. Res., 102, 18 255–18 265. Igarashi, G., Fujii, T., Mori, T., Notsu, K. &Watanabe, S., 2000. Continuous monitoring of fumarolic gas flux at a borehole in an active volcanic island, Geophys. Res. Lett., 27, 1539–1542. INGV, 2001. http://www.ingv.it/∼roma/reti/rms/terremoti/italia/arezzo/ arezzo.html Italiano, F., Martinelli, G. & Nuccio, P.M., 2001. Anomalies of mantlederived helium during the 1997–1998 seismic swarm of Umbria-Marche, Italy, Geophys. Res. Lett., 28, 839–842. Jonsson, S., Segall, P., Pedersen, R. & Bj¨ornsson, G., 2003. Post-earthquake ground movements correlated to pore-pressure transients, Nature, 424, 179–183. Kessels, W. & K¨uck, J., 1995. Hydraulic communication in crystalline rock between the two boreholes of the continental drilling project in Germany, Int. J. Rock Mech. Min. Sci. &Geomech. Abstr., 32(1), 37–47. Koch, U., Heinicke, J. & Vossberg, M., 2003. Hydrological effects of the latest Vogtland-NW-Bohemian swarmquake period (August to December 2000), J. Geodynamic, 35, 107–123. Koizumi, N., Kitagawa, Y., Matsumoto, N., Takahashi, M., Sato, T., Kamigaichi, O. & Nakamura, K., 2004. Preseismic groundwater level changes induced by crustal deformations related to earthquake swarms off the east coast of Izu Peninsula, Japan, Geophys. Res. Lett., 31, L10606. Matsumoto, N., Kitagawa, G. & Roeloffs, E.A., 2003. Hydraulic response to earthquakes in the Haibara well, central Japan. I. Groundwater level changes revealed using state space decomposition of atmospheric pressure, rainfall and tidal responses, Geophys. J. Int., 155, 885–898. Miller, S.A. & Nur, A., 2000. Permeability as a toggle switch in fluid-controlled crustal processes, Earth planet. Sci. Lett., 183, 133– 146. Miller, S.A., Collettini, C., Chiaraluce, L., Cocco, M., Barchi, M. & Kaus, B.J., 2004. Aftershocks driven by a high-pressure CO2 source at depth, Nature, 427, 724–727. Minissale, A., 2004. Origin, transport and discharge of CO2 in Central Italy, Earth-Sci. Rev., 66, 89–141. Minissale, A.,Magro, G., Martinelli, G.,Vaselli,O.&Tassi, G.F., 2000. Fluid geochemical transect in the Northern Apennines (Central-Northern Italy): fluid genesis and migration and tectonic implications, Tectonophysics, 319, 199–222. Muir-Wood, R. & King, G.C., 1993. Hydrological signatures of earthquake strain, J. geophys. Res., 98, 22 035–22 068. Nishizawa, S., Igarashi, G., Sano, Y., Shoto, E., Tasaka, S. & Sasaki, Y., 1998. Radon, Cl− and SO2− 4 anomalies in hot spring water associated with the 1995 earthquake swarm off the east coast of the Izu Peninsula, central Japan, Applied Geochem., 13, 89–94. Parotidis, M., Shapiro, S.A. & Rothert, E., 2005. Evidence for triggering of the Vogtland swarms 2000 by pore pressure diffusion, J. geophys. Res., 110, B05S10. Pauselli, C., Marchesi, R. & Barchi, M.R., 2002. Seismic image of the compressional and extensional structures in the Gubbio area (Umbrian-Pre Apennines), Boll. Soc. Geol. It., Vol. Spec. 1, 263–272. Piccinini, D. et al., 2003. A microseismic study in a low seismicity area of Italy: the Citt`a di Castello 2000–2001 experiment, Ann. Geophys., 46, 1315–1324. Pizzino, L., Burrato, P., Quattrochi, F. & Valensise, G., 2004. Geochemical signature of large active faults: the example of the 5 February 1783, Calabrian earthquake (Southern Italy), J. Seismol., 8, 363–380. Quilty, E. & Roeloffs, E., 1997. Water level changes in response to the December 20, 1994 M4.7 earthquake near Parkfield, California, Bull. Seismol. Soc. Am., 87, 310–317. Roeloffs, E., Sneed, M., Galloway, D., Sorey, M., Farrar, C., Howle, J. & Hughes, J., 2003.Water-level changes induced by local and distant earthquakes at Long Valley caldera, California, J. Volc. Geotherm. Res., 127, 269–303. Rojstaczer, S., Wolf, S. & Michel, R., 1995. Permeability enhancement in the shallow crust as a cause of earthquake-induced hydrological changes, Nature, 373, 237–239. Rogie, J.D., Kerrick, D.M., Chiodini, G. & Frondini, F. (2000). Flux measurements of nonvolcanic CO2 emission from some vents in Central Italy, J. geophys. Res., 105, 8435–8445. Shapiro, S.A., Huenges, E. & Borm, G., 1997. Estimating the crust permeability from fluid-injection-induced seismic emission at the KTB site, Geophys. J. Int., 131, F15–F18. Shapiro, S.A., Patzig, R., Rothert, E. & Ringelschwentner, J., 2003. Triggering of seismicity by pore-pressure perturbations: permeabilityrelated signatures of the phenomenon, Pure appl. Geophys., 160, 1051–1066. Shimoike, Y. & Notsu, K., 2000. Continuous chemical monitoring of volcanic gas in Izu-Oshima volcano, Japan, J. Volc. Geotherm. Res., 101, 201–221. Sibson, R.H., 1990. Conditions for fault-valve behaviour, in Deformation Mechanisms, Rheology and Tectonics, Vol. 54, pp. 15–28, eds Knipe, R.J. & Ruttler, E.H., Geological Society Special Publication, London. Sibson, R.H., 1992. Implications of fault-valve behaviour for rupture nucleation and recurrence, Tectonophysics, 211, 283–293. Sibson, R.H., 2000. Fluid involvement in normal faulting, J. Geodyn., 29, 469–499. Simpson, G., Gu´eguen, Y. & Schneider, F., 2001. Permeability enhancement due to microcrack dilatancy in the damage regime, J. geophys. Res., 106, 3999–4016. Sorey, M.L., Evans, W.C., Kennedy, B.M., Farrar, C.D., Hainsworth, L.J. & Hausback, B., 1998. Carbon dioxide and helium emissions from a reservoir of magmatic gas beneath Mammoth Mountain, California, J. geophys. Res, 103, 15 303–15 323. Steacy, S., Gomberg, J. & Cocco, M., 2005. Introduction to special section: stress transfer, earthquake triggering, and time-dependent seismic hazard, J. geophys. Res., 110, B05S01. Streit, J.E. & Cox, S.F., 2001. Fluid pressure at hypocenters of moderate to large earthquakes, J. geophys. Res., 106, 2235–2243. Vaselli, O., Tassi, F., Minissale, A., Capaccioni, B., Magro, G. & Evans, W.C., 1997. Geochemistry of natural gas manifestations from the Upper Tiber Valley (Central Italy), Miner. Petrogr. Acta, XL, 201– 212. Wang, R., Woith, H., Milkereit, C. & Zschau, J., 2004. Modelling of hydrogeochemical anomalies induced by distant earthquakes, Geophys. J. Int., 157, 717–726.en
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorHeinicke, J.en
dc.contributor.authorBraun, T.en
dc.contributor.authorBurgassi, P.en
dc.contributor.authorItaliano, F.en
dc.contributor.authorMartinelli, G.en
dc.contributor.departmentSachsische Akademie der Wissenschaften zu Leipzig, Arbeitsstelle an der TU Bergakademie Freiberg, Leipziger Str. 23, 09599 Freiberg, Germany.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentAir Liquide Italia srl., 52100 Arezzo, Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.departmentARPA Emilia Romagna, Via Amendola 2, 42100 Reggio Emilia, Italyen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptInstitute of Geophysics and Geoinformatics, TU Bergakademie, 09596 Freiberg, Germany;-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptAir Liquide Italia srl., 52100 Arezzo, Italy-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptARPA Emilia-Romagna-
crisitem.author.orcid0000-0003-1778-1328-
crisitem.author.orcid0000-0002-9465-6398-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent05. General-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
974.pdf961.48 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 5

31
checked on Feb 10, 2021

Page view(s) 50

179
checked on Mar 27, 2024

Download(s)

31
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric